PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Machine Tool Table Dynamics Tests when Starting and Braking during an Operation Test

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The main objective of the presented research is to analyze the dynamics of table motion of a CNC FV580A 3-axis milling machine during machining with fixed technological cutting parameters. The research includes the measurement of velocity, acceleration and deceleration, as well as distance and time parameters related to the movement of the machine's table during starting and braking during work tests. The results of the measurements were recorded using a Phantom v1610 high-speed video camera equipped with a Nikon ED AF NIKKOR 80:200 mm 1:2.8D lens, dedicated to the analysis of high-speed phenomena. The analysis presented in the publication includes a comparison of the results of the motion parameters obtained as a function of the feed motion speed vf. The results of the obtained tests and their analysis are discussed and presented in graphs and tables.
Twórcy
  • Department of Production Engineering, Faculty of Mechanical Engineering, Lublin University of Technology, 20-618 Lublin, ul. Nadbystrzycka 36, 20-618 Lublin, Poland
  • Department of Production Engineering, Faculty of Mechanical Engineering, Lublin University of Technology, 20-618 Lublin, ul. Nadbystrzycka 36, 20-618 Lublin, Poland
Bibliografia
  • 1. Abakumow A., Taranenko W., Zubrzycki J., Taranenko G. Identyfikacja i sterowanie układem dynamicznym. Monografia. Oficyna Wydawnicza Politechniki Lubelskiej, 2014.
  • 2. Beare R., Barre P.J., Borne P., Dumetz E. Influence of a Jerk Controlled Movement Law on the Vibratory Behaviour of High-Dynamics Systems. Journal of Intelligent and Robotic Systems 2005.
  • 3. Breaz R. E., Racz G.S., Bologa O.C., Oleksik V.Ş. Motion control of medium size CNC machine tools a hands-on approach. In: 7th IEEE Conference, Industrial Electronics and Applications (ICIEA), Singapore, Singapore 2012, 125–131.
  • 4. Erkorkmaz K., Altintas Y.: High speed CNC system design. Part II: modeling and identification of feed drivers. Inaternationl Journal of Machine Tools & Manufacture 2001; 41: 1487-1509.
  • 5. Hecker R.L., Flores G.M., Xie Q., Haran R.. Servocontrol of machine – tools. A Review. Latin American Applied Research 2008; 38: 85–94.
  • 6. Honczarenko J. Elastyczna automatyzacja wytwarzania. WNT, 2000.
  • 7. Hung J.P., Lin, W.Z. Investigation of the dynamic characteristics and machining stability of a bi–rotary milling Tool. Advances in Science and Technology Research Journal 2019; 13(1): 14–22.
  • 8. Jastrzębski R., Krajewski G. Metody diagnostyki błędów precyzyjnych stołów obrotowych w obrabiarkach CNC. In: XIV Krajowa i V Międzynarodowa Konferencja Naukowo-Techniczna “Metrologia w Technikach Wytwarzania”, Pułtusk, Poland 2011.
  • 9. Joshi Shrikrishna N. Drives and Mechanisms. Elements of CNC machine tools: electric motors. Departament of Mechanical Engineering, Indian Institute of Technology Guwahati, India 2013.
  • 10. Józwik J., Kuric I., Sága M., Lonkwic P. Diagnostics of CNC Machine Tools in Manufacturing Process with Laser Interferometer Technology. Manufacturing Technology 2014; 14(1): 23-25.
  • 11. Józwik, J. Dynamic Measurement of Spindle Errors of CNC Machine Tools by Capacitive SensorsDuring Aircraft Parts Machining. In: 5th IEEE International Workshop on Metrology for AeroSpace,Roma, Italy 2018, 398–402.
  • 12. Józwik J., Kuric I., Łukaszewicz A. Analysis of theTable Motion of a 3-Axis CNC Milling MachineTool at Start-up and Braking. In: Advanced Manufacturing Processes. InterPartner 2019. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-40724-7_11.
  • 13. Lavernhe S., Tournier C., Lartigue C. Kinematic performances in 5-axis machining. In: Tichkiewitch S., Tollenaere M., Ray P. (Eds). Advances in Integrated Design and Manufacturing in Mechanical Engineering II. Springer, Dordrecht, 2007, 489-503.
  • 14. Li L., Zhang, J. R., Liu H.W. Dynamic characteristics of a linear motion guide. Journal of Vibration and Shock 2012: 31(18): 111–114 (+142).
  • 15. Bin L., Bo L., Xinyong M., Hui C., Fangyu P., Hongqi L. A New approach to identifying the dynamic behavior of CNC machine tools with respekt to different worktable feed speeds. State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
  • 16. Li X. P., Nie H. F. Analysis on dynamic characteristics of CNC machine tool and experiment with influence of rolling guide joint considered. In: Jian L. (eds.). Advanced Materials Research, Manufacturing Science and Materials Engineering, vol. 443–444. Trans Tech Publications Ltd, Switzerland 2012, 745–750.
  • 17. Liu Y., Wan M., Xing W.J., Xiao Q. B., Zhang W. H.. Generalized actual inverse kinematic model for compensating geometric errors in five-axis machine tools. International Journal of Mechanical Science 2018; 145: 299–317.
  • 18. Dun L, Hui L., Quing L. Dynamic error of CNC machine tools: A state of the art review. State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710054, China 2019.
  • 19. Koren Y. Control of machine tools. Transaction of the ASME Journal of Manufacturing Science and Engineering 1997; 119: 749–755.
  • 20. Pytka, J.; Budzyński, P.; Józwik, J.; Michałowska, J.; Tofil, A.; Łyszczyk, T.; Błażejczak, D. Application of GNSS/INS and an optical sensor for determining airplane takeoff and landing performance on a grassy airfield. Sensors 2019, 19, 5492.
  • 21. Michałowska J., Tofil A., Józwik J., Pytka J., Budzyński P., Korzeniewska E. Measurement of high-frequency electromagnetic fields in CNC machine tools area. In: 4th International Symposium on Wireless Systems within the Int. Conf. IDAACS-SWS, Lviv, Ukraine 2018, 162–165.
  • 22. Pytka, J.; Budzyński, P.; Łyszczyk, T.; Józwik, J.; Michałowska, J.; Tofil, A.; Błażejczak, D.; Laskowski, J. Determining wheel forces and moments on aircraft landing gear with a dynamometer sensor. Sensors 2020, 20, 227.
  • 23. Michałowska, J.; Tofil, A.; Józwik, J.; Pytka, J.; Legutko, S.; Siemiątkowski, Z.; Łukaszewicz, A. Monitoring the risk of the electric component imposed on a pilot during light aircraft operations in a high-frequency electromagnetic field. Sensors 2019, 19, 5537.
  • 24. Smith T. Machine tool metrology: an industrial handbook. 1st edn. Springer, Switzerland 2016.
  • 25. Vukobratovic M., Tuneski A. Mathematical model of multiple manipulators: cooperative compliant manipulation on dynamical environments. Mechanism and Machine Theory 1998; 33(8): 1211-1239.
  • 26. Wu S.K., Tsai M.S., Lin M.T., Huang H.W. Development of novel tool center point velocity planning algorithm for five axis machine tool. International Journal of Precision Engineering and Manufactur ing 2018; 19(8): 1187-1199.
  • 27. Xu J., Zhang D., Sun Y. Kinematics performance oriented smoothing method to plan tool orientations for 5-axis ball-end CNC machining. International Journal of Mechanical Sciences 2019; 157-158: 293-303.
  • 28. Younkin G.W. Modeling Machine Tool Feed Servo Drives Using Simulation Techniques to Predict Performance. IEEE Transactions on Industry Applications 1991; 27(2): 268-274.
  • 29. ZhangY. M., Gu R.J., Yang G.X. Static and dynamic characteristic analysis for the HSR series linear motion guide. In: Yarlagadda P., Kim Y. E. (eds.) Advanced Materials Research, Research in Materials and Manufacturing Technologies, vol. 834–836. Trans Tech Publications Ltd, Switzerland 2014, 1488–1492.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2e39dcd8-7a01-48c8-86c6-be8f62e58811
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.