PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Predicting plant establishment : Germination responses of five Arrhenatherion alliance species from two distinct climatic origins

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The lowland hay meadows conservation status is increasingly at risk due to improper management and climate change, threatening plant communities, including Arrhenatherion alliance. As a result, species enrichment is required. However, natural plant self-establishment remains challenging due to the high variability in germination, largely caused by climate factors. Thus, a germination test is suggested before directly sowing local seeds in the field. Therefore, this study aimed to investigate how germination characteristics of five local species are affected by the interplay between species and weather factors, specifically mean temperature and total rainfall during seed filling and ripening. During warm, dry periods, the seed mass of Campanula patula L. and Centaurea jacea L. was higher (0.04 g and 1.87 g, respectively), whereas in wet periods, the seed mass of Achillea millefolium L. (0.10 g), Plantago lanceolata L. (1.24 g), and Tragopogon pratensis L. (7.41 g) was higher. The germination capacity was significantly affected by species-specific factors. Seeds of A. millefolium and T. pratensis during wetter years showed higher germination rates than other species, which exhibited the opposite trend. Additionally, a wetter collection period shortened t50 (time required for 50% germination) in all species except A. millefolium and T. pratensis, while C. patula remained unaffected in both years. A positive correlation was observed between seed mass, germination capacity, and speed, while a negative correlation with t50. Hence, an increase in seed mass leads to a reduced t50 duration. According to our findings, seed mass may serve as a reliable predictor of plant establishment in the field.
Wydawca
Rocznik
Tom
Strony
148--154
Opis fizyczny
Bibliogr. 35 poz., tab., wykr.
Twórcy
  • Warsaw University of Life Sciences – SGGW, Institute of Agriculture, Agronomy Department, Nowoursynowska 159, 02-776 Warsaw, Poland
  • Warsaw University of Life Sciences – SGGW, Institute of Agriculture, Agronomy Department, Nowoursynowska 159, 02-776 Warsaw, Poland
Bibliografia
  • Cappers, R.T.J., Bekker, R.M. and Jans, J.E.A. (2006) Digitale Zadenatlas van Nederland [Digital seed atlas of the Netherlands]. Groninger: Barkhuis Publishing and Groningen University Library.
  • Council Directive (1992) “Council directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora,” Official Journal, L 206. Consolidated version 1.7.2013.
  • Dalgleish, H.J., Koons, D.N. and Adler, P.B. (2010) “Can life-history traits predict the response of forb populations to changes in climate variability?,” Journal of Ecology, 98, pp. 209–217. Available at: https://doi.org/10.1111/j.1365-2745.2009.01585.x.
  • Donohue, K. et al. (2010) “Germination, postgermination, adaptation, and species ecological ranges,” Annual Review of Ecology, Evolution, and Systematics, 41, pp. 293–319. Available at: https://doi.org/10.1146/annurev-ecolsys-102209-144715.
  • Dudney, J. et al. (2017) “Lagging behind: Have we overlooked previous-year rainfall effects in annual grasslands?” Journal of Ecology, 105, pp. 484–495. Available at: https://doi.org/10.1111/1365-2745.12671.
  • Dukes, J. et al. (2011) “Strong response of an invasive plant species (Centaurea solstitialis L.) to global environmental changes,” Ecological Applications, 21(6), pp. 1887–1894. Available at: https://doi.org/10.1890/11-0111.1.
  • EEA (2019) Lowland hay meadows (Alopecurus pratensis, Sanguisorba officinalis). EUNIS – Factsheet for lowland hay meadows (Alopecurus pratensis, Sanguisorba officinalis). Copenhagen: European Environment Agency. Available online: https://eunis.eea.europa.eu/habitats/10137 (Accessed: August 26, 2024).
  • Ellenberg, H. and Leuschner, Ch. (2010) Vegetation Mitteleuropas mit den Alpen [Vegetation of Central Europe with the Alps]. 6th edn. Stuttgart: Eugen Ulmer Verlag, UTB.
  • Farooq, M. et al. (2005) “Thermal hardening: A new seed vigor enhancement tool in rice,” Journal of Integrative Plant Biology, 47, pp. 187–193. Available at: https://doi.org/10.1111/j.1744-7909.2005.00031.x.
  • Fay, P.A. and Schultz, M.J. (2009) “Germination, survival, and growth of grass and forb seedlings: Effects of soil moisture variability,” Acta Oecologica, 35, pp. 679–684. Available at: https://doi.org/10.1016/j.actao.2009.06.007.
  • Fenner, M. and Thompson, K. (2005) The ecology of seeds. New York: Cambridge University Press.
  • Fernández-Pascual, E. et al. (2022) “Seed ecology of European mesic meadows,” Annals of Botany, 129, pp. 121–133. Available at: https://doi.org/10.1093/aob/mcab135.
  • Fry, E.L., Manning, P. and Power, S.A. (2014) “Ecosystem functions are resistant to extreme changes to rainfall regimes in a mesotropic grassland,” Plant Soil, 381, pp. 351–365. Available at: https://doi.org/10.1007/s11104-014-2137-2.
  • Hölzel, N. and Otte, A. (2004) “Assessing soil seed bank persistence in flood-meadows: The search of reliable traits,” Journal of Vegetation Science, 15, pp. 93–100. Available at: https://doi.org/10.1111/j.1654-1103.2004.tb02241.x.
  • ISTA (2018) Międzynarodowe przepisy oceny nasion ISTA, 2018 wersja polska [International rules for seed testing, Polish version]. Radzików, Poland: IHAR-PIB.
  • Jäger, H. et al. (2020) “Grassland biomass balance in the European Alps: Current and future ecosystem service perspectives,” Ecosystem Services, 45, 101163. Available at: https://doi.org/10.1016/j.ecoser.2020.101163.
  • Janicka, M. et al. (2021) “Diversity of the seed material of selected plant species of naturally valuable grassland habitats in terms of the prognosis of introduction success,” Sustainability, 13, 13979. Available at: https://doi.org/10.3390/su132413979.
  • Janicka, M., Pawluśkiewicz, B. and Gnatowski, T. (2023) “Preliminary results of the introduction of dicotyledonous meadow species,” Sustainability, 15, 3231. Available at: https://doi.org/10.3390/su15043231.
  • Kiss, R. et al. (2018) “Grassland seed bank and community resilience in a changing climate,” Restoration Ecology, 26, pp. S141–S150. Available at: https://doi.org/10.1111/rec.12694.
  • Koutsovoulou, K., Daws, M.I. and Thanos, C.A. (2014) “Campanulaceae: A family with small seeds that require light for germination,” Annals of Botany, 113, pp. 135–143. Available at: https://doi.org/10.1093/aob/mct250.
  • Kövendi-Jakó, A. et al. (2017) “Relationship of germination and establishment for twelve plant species in restored dry grassland,” Applied Ecology and Environmental Research, 15(4), pp. 227–239. Available at: http://dx.doi.org/10.15666/aeer/1504_227239.
  • Masuda, M. and Washitani, I. (1990) “A comparative ecology of the seasonal schedules for ‘Reproduction by seeds’ in a moist tall grassland community,” Functional Ecology, 4(2), pp. 169–182. Available at: https://doi.org/10.2307/2389336.
  • Mirek, Z. et al. (2020) “Krytyczna lista roślin naczyniowych Polski [Flowering plants and pteridophytes of Poland – A checklist],” in Z. Mirek and W. Szafer (eds.) Bioróżnorodność Polski [Biodiversity of Poland]. Kraków: Institute of Botany, Polish Adacemy of Sciences, Vol. 1.
  • Murray, B.R. et al. (2004) “Geographical gradients in seed mass in relation to climate,” Journal of Biogeography, 33, pp. 379–388. Available at: https://doi.org/10.1046/j.0305-0270.2003.00993.x.
  • O’Brien, M. et al. (2013) “The influence of variable rainfall frequency on germination and early growth of shade-tolerant Dipterocarp seedlings in Borneo,” PLoS ONE, 8(7), e70287. Available at: https://doi.org/10.1371/journal.pone.0070287.
  • Rosbakh, S. et al. (2022) “Alpine plant communities differ in their seed germination requirements along a snowmelt gradient in the Caucasus,” Alpine Botany, 132, pp. 223–232. Available at: https://doi.org/10.1007/s00035-022-00286-x.
  • Schils, R.L.M. et al. (2022) “Permanent grasslands in Europe: Land use change and intensification decrease their multifunctionality,” Agriculture, Ecosystem and Environment, 330, 107891. Available at: https://doi.org/10.1016/j.agee.2022.107891.
  • Seguí, N., Jiménez, M.A. and Cursach, J. (2021) “Local conditions effects on seed germination of Hypericum balearicum L. in response to temperature,” Flora, 282, 151896. Available at: https://doi.org/10.1016/j.flora.2021.151896.
  • Timson, J. (1965) “New method of recording germination data,” Nature, 207, pp. 216–217. Available at: https://doi.org/10.1038/207216a0.
  • Verdú, M. and Traveset, A. (2005) “Early emergence enhances plant fitness: A phylogenetically controlled meta-analysis,” Ecology, 86 (6), pp. 1385–1394. Available at: https://doi.org/10.1890/04-1647.
  • Veselá, A. et al. (2020) “Seed mass and plant home site environment interact to determine alpine species germination patterns along an elevation gradient,” Alpine Botany, 130, pp. 101–113. Available at: https://doi.org/10.1007/s00035-020-00242-7.
  • Vinczeffy, I. (1984) “The effect of some ecological factors on grass yield,” in Proceedings of the 10th General Meeting of European Grassland Federation, 26–30 June 1984. Ås, Norway: Norwegian State Agricultural Research Stations, pp. 76–79.
  • Wang, Y. et al. (2018) “Phylogeny, habitat together with biological and ecological factors can influence germination of 36 subalpine Rhododendron species from the eastern Tibetan Plateau,” Ecology and Evolution, 8, pp. 3589–3598. Available at: https://doi.org/10.1002/ece3.3874.
  • Xu, J. and Du, G. (2023) “Seed germination response to diurnally alternating temperatures: Comparative studies on alpine and subalpine meadows,” Global Ecology and Conservation, 44, e02503. Available at: https://doi.org/10.1016/j.gecco.2023.e02503.
  • Yi, F. et al. (2019) “Seed germination responses to seasonal temperature and drought stress are species-specific but not related to seed size in a desert steppe: Implications for effect of climate change on community service,” Ecology and Evolution, 9, pp. 2149–2159. Available at: https://doi.org/10.1002/ece3.4909.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2e392d4f-84d9-48b3-b682-5373077341d9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.