PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of the Surface Layer and Feed Force after Milling Polymer Composites with Coated and Uncoated Tools

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Polymer composites are widely used in various fields and industries. This study investigated milling of four different glass and carbon fiber reinforced plastics. First, feed force values were determined in the milling process conducted using tools with polycrystalline diamond inserts, with titanium nitride-coated cemented carbide inserts and with uncoated ground cemented carbide inserts. Machined surfaces were then examined for roughness. Using scanning microscopy (SEM), differences in the surface layer were also determined. Results showed that the lowest force values were obtained in milling of glass fiber reinforced plastics using tools with polycrystalline diamond inserts. The best machining results in terms of roughness were obtained after milling glass fiber reinforced plastics.
Słowa kluczowe
Twórcy
  • Department of Production Engineering, Faculty of Mechanical Engineering, Lublin University of Technology, ul. Nadbystrzycka 36, 20-618 Lublin, Poland
Bibliografia
  • 1. Newman B., Creighton C., Henderson L.C., Stojcevski F. A review of milled carbon fibres in composite materials. Composites Part A: Applied Science and Manufacturing. 2022; 163: 107249
  • 2. Zaleski K., Skoczylas A., Ciecielag K. The Investigations of the Surface Layer Properties of C45 Steel After Plasma Cutting and Centrifugal Shot Peening. In: Królczyk GM, Niesłony P, Królczyk J (eds) Industrial Measurements in Machining. Springer International Publishing, Cham. 2020; 172–185.
  • 3. Matuszak J., Kłonica M., Zagórski I. Measurements of Forces and Selected Surface Layer Properties of AW-7075 Aluminum Alloy Used in the Aviation Industry after Abrasive Machining. Materials. 2019; 12: 3707.
  • 4. Kłonica M., Kuczmaszewski J. Modification of Ti6Al4V Titanium Alloy Surface Layer in the Ozone Atmosphere. Materials. 2019; 12: 2113.
  • 5. Matuszak J., Zaleski K., Ciecieląg K., Skoczylas A. Analysis of the Effectiveness of Removing Surface Defects by Brushing. Materials. 2022; 15: 7833.
  • 6. Caggiano A. Machining of Fibre Reinforced Plastic Composite Materials. Materials. 2018; 11: 442.
  • 7. Kiliçkap E., Yardimeden A., Çelik Y.H. Investigation of experimental study of end milling of CFRP composite. Science and Engineering of Composite Materials. 2015; 22: 89–95.
  • 8. Vinayagamoorthy R. A review on the machining of fiber-reinforced polymeric laminates. Journal of Reinforced Plastics and Composites. 2018; 37: 49–59.
  • 9. Azmi A.I., Lin R.J.T., Bhattacharyya D. Machinability study of glass fibre-reinforced polimer composites during end milling. Int J Adv Manuf Technol. 2013; 64: 247–261.
  • 10. Hintze W., Hartmann D. Modeling of Delamination During Milling of Unidirectional CFRP. Procedia CIRP. 2013; 8: 444–449.
  • 11. Teicher U., Rosenbaum T., Nestler A., Brosius A. Characterization of the Surface Roughness of Milled Carbon Fiber Reinforced Plastic Structures. Procedia CIRP. 2017; 66: 199–203.
  • 12. Ghidossi P., El Mansori M., Pierron F. Edge machining effects on the failure of polymer matrix composite coupons. Composites Part A: Applied Science and Manufacturing. 2004; 35: 989–999.
  • 13. Hosokawa A., Hirose N., Ueda T., Furumoto T. High-quality machining of CFRP with high helix end mill. CIRP Annals. 2014; 63: 89–92.
  • 14. Karpat Y., Polat N. Mechanistic force modeling for milling of carbon fiber reinforced polymers with double helix tools. CIRP Annals. 2013; 62: 95–98.
  • 15. Yuanyushkin A.S., Rychkov D.A., Lobanov D.V. Surface Quality of the Fiberglass Composite Material after Milling. AMM. 2014; 682: 183–187.
  • 16. Ciecieląg K. Influence of the Length of Components From Polymer Composite on Selected Machinability Indicators in the Circumferential Milling Process. Adv Sci Technol Res J. 2020; 14: 229–239.
  • 17. Wei Y., An Q., Cai X., Chen M., Ming W. Influence of Fiber Orientation on Single-Point Cutting Fracture Behavior of Carbon-Fiber/Epoxy Prepreg Sheets. Materials. 2015; 8: 6738–6751.
  • 18. Davim J.P., Reis P. 2005. Damage and dimensional precision on milling carbon fiber-reinforced plastics using design experiments. Journal of Materials Processing Technology. 160; 160–167.
  • 19. Teti R. 2002. Machining of Composite Materials. CIRP Annals. 51; 611–634.
  • 20. Ciecieląg K., Zaleski K., Kęcik K. Effect of Milling Parameters on the Formation of Surface Defects in Polymer Composites. Mater Sci. 2022; 57: 882–893.
  • 21. Nurhaniza M., Ariffin M.K.A.M., Mustapha F., Baharudin B.T.H.T. Analyzing the Effect of Machining Parameters Setting to the Surface Roughness during End Milling of CFRP-Aluminium Composite Laminates. International Journal of Manufacturing Engineering. 2016; 1–9.
  • 22. Uhlmann E., Sammler F., Richarz S., Heitmüller F., Bilz M. Machining of Carbon Fibre Reinforced Plastics. Procedia CIRP. 2014; 24: 19–24.
  • 23. Rangaswamy T., Nagaraja R. Machining of Kevlar Aramid fiber reinforced polymer composite laminates (K-1226) using solid carbide step drill K34. Surathkal, India. 2020; 050014.
  • 24. Palanikumar K., Karunamoorthy L., Karthikeyan R. Assessment of factors influencing Surface roughness on the machining of glass fiber-reinforced polymer composites. Materials & Design. 2006; 27: 862–871.
  • 25. Karpat Y., Bahtiyar O., Değer B. Milling Force Modelling of Multidirectional Carbon Fiber Reinforced Polymer Laminates. Procedia CIRP. 2012; 1: 460–465.
  • 26. Davim J.P., Reis P., António C.C. A study on milling of glass fiber reinforced plastics manufactured by hand-lay up using statistical analysis (ANOVA). Composite Structures. 2004; 64: 493–500.
  • 27. Azmi A.I., Lin R.J.T., Bhattacharyya D. Experimental Study of Machinability of GFRP Composites by End Milling. Materials and Manufacturing Processes. 2012; 27: 1045–1050.
  • 28. Jenarthanan M.P., Jeyapaul R. Optimisation of machining parameters on milling of GFRP composites by desirability function analysis using Taguchi method. Int J Eng Sci Tech. 2018; 5: 22–36.
  • 29. Ciecieląg K. Study on the Machinability of Glass, Carbon and Aramid Fiber Reinforced Plastics in Drilling and Secondary Drilling Operations. Adv Sci Technol Res J. 2022; 16: 57–66.
  • 30. Biruk-Urban K., Józwik J., Bere P. Cutting Forces and 3D Surface Analysis of CFRP Milling. Adv Sci Technol Res J. 2022; 16: 206–215.
  • 31. Rusinek R. Cutting process of composite materials: An experimental study. International Journal of Non-Linear Mechanics. 2010; 45: 458–462.
  • 32. Chibane H., Serra R., Leroy R. Optimal milling conditions of aeronautical composite material under temperature, forces and vibration parameters. Journal of Composite Materials. 2017; 51: 3453–3463.
  • 33. Bayraktar S., Turgut Y. Investigation of the cutting forces and surface roughness in milling carbon-fiber-reinforced polymer composite material. Mater Tehnol. 2016; 50: 591–600.
  • 34. Ciecieląg K. Effect of Composite Material Fixing on Hole Accuracy and Defects During Drilling. Adv Sci Technol Res J. 2021; 15: 54–65.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2e37a381-21cd-465f-a87c-c24afc8c529f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.