PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Design and Implementation of a Dynamic Testing Rig for Testing of Pipe Conveyor Belt and their Components

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Pipe conveyors represent a continuous transport system that is difficult to obtain real operating data from in terms of operational characteristics’ research. That is why the research of these conveyors is mainly supported with the data from special, static testing rigs. However, the measurements do not provide corresponding operating results and can differ from actual operating conditions. That is why, a dynamic testing rig was designed for the research which also represents the smallest pipe conveyor worldwide. The article describes options of conveyor belts and pipe belt conveyor components examination with the use of static and dynamic testing rig, and researches a new design and implementation of a dynamic testing rig - the smallest fully functional pipe belt conveyor in the world with a length of 11 m and belt width of 0.6 m. The said testing device can provide data obtained during dynamic operation of the pipe conveyor, which compared with a static rig increases the accuracy and value of obtained data and results.
Słowa kluczowe
Twórcy
  • Faculty of Manufacturing Technologies, Technical University of Kosice with a seat in Presov, Bayerova 1, 080 01 Presov, Slovak Republic
  • Faculty of Manufacturing Technologies, Technical University of Kosice with a seat in Presov, Bayerova 1, 080 01 Presov, Slovak Republic
  • Technical University of Kosice, Letna 9, 042 00 Kosice, Slovak Republic
Bibliografia
  • 1. Zhang Z., Zhou F., Ji J. Parameters Calculation and Structure Design of Pipe Belt Conveyer. In: Computer-Aided Industrial Design and Conceptual Design, 2008 CAID/CD 2008 9th International Conference on. Kunming 2008, 614–617.
  • 2. Tomek M., Strohmandl J., Vicar D., Safarik Z. The Use of Pipeline Transportation as a Special Means for Solving Emergency Situations. In: Proceedings of the 20th International Scientific Conference Transport Means 2016. Kaunas: Kaunsa Univ Technology Press. 2016; 642–647.
  • 3. Zhang Y., Steven R. Pipe conveyor and belt: Belt construction, low rolling resistance and dynamic analysis. In: Society of Mining, Metallurgy and Exploration 2012 Annual Meeting. Seattle 2012, 616–619.
  • 4. Zhang Y. Extended reach: Overland pipe conveyor with low rolling resistance belt. Bulk Solids Handl. 2013; 33(4): 16–21.
  • 5. de Graaf R.M.T., Pang Y. Troughability testing on troughed and pipe conveyor belts [Internet]. Report No 2012.TEL.7695, Delft University of Technology. 2012. Available from: http://resolver.tudelft.nl/uuid:524aaa42-7981-400c-b379-52750c8dddc4.
  • 6. Xiaoxia S., Wenjun M., Hui Z., Yuan Y., Zhengmao Y. Analysis on the bending stiffness and the form force of the pipe conveyor belt. Sensors and Transducers. 2013; 161: 655–660.
  • 7. Hötte S., Overmeyer L., Wennekamp T. Form force behaviour of pipe conveyors in different curve radii. Bulk Solids Handl. 2011; 161(3): 164–169.
  • 8. Michalik P., Molnár V., Fedorko G. The design of experimental stand for determination of conveyor belts closing for belts with various width in different distances of the pipe conveyor roller mills. In: Mining Energetic [Internet]. Beograd 2007, 336–40.
  • 9. Michalik P., Molnár V., Fedorko G., Weiszer M. An experimental test rig: For measuring the strength of pipe conveyor belts. Bulk Solids Handl. 2013; 33(5): 52–55.
  • 10. Michalik P., Molnár V., Fedorko G., Weiszer M. An experimental test rig: For measuring the strength of pipe conveyor belts. Bulk Solids Handl. 2013; 33(5): 52–55.
  • 11. Molnár V., Fedorko G., Stehlíková B., Kudelás Ľ., Husáková N. Statistical approach for evaluation of pipe conveyor’s belt contact forces on guide idlers. Measurement. 2013; 46(9): 3127–3135.
  • 12. Molnár V., Fedorko G., Stehlíková B., Michalik P., Kopas M. Mathematical models for indirect measurement of contact forces in hexagonal idler housing of pipe conveyor. Measurement. 2014; 47: 794–803.
  • 13. Hinterholzer S., Kessler F., Grabner K. Research on a pipe conveyor with a completely new belt guidance. Bulk Solids Handl [Internet]. 2001; 21(6): 614–620. Available from: http://www.scopus.com/inward/record.url?eid=2-s2.0-0035518453&partnerID=40&md5=9e716fab309b5e95ac7453a72e59e20f
  • 14. Fedorko G., Molnár V., Michalik P. Hadicové dopravníky Pipe conveyors. Košice: TU Košice 2013, 310.
  • 15. Michalik P. Pipe conveyors in Slovakia. Transp Logist [Internet]. 2007;1:1–5. Available from: http://www.342.vsb.cz/zdvihacizarizeni/zz-2007-1.pdf.
  • 16. Rozbroj J., Necas J., Gelnar D., Hlosta J., Zegzulka J. Validation of Movement over a Belt Conveyor Drum. Adv Sci Technol J. 2017; 11(2): 118–124.
  • 17. Molnár V., Sabovčík M. Static testing evaluation of pipe conveyor belt for different tensioning forces. Open Eng. 2019; 9(1): 580–585.
  • 18. Zamiralova M.E., Lodewijks G. Pipe Conveyor Test Rigs: Design, Application and Test Results – Part A. Bulk Solids Handl. 2014; 34(5): 40–45.
  • 19. Zamiralova M.E., Lodewijks G. Pipe Conveyor Test Rigs: Design, Application and Test Results – Part B. Bulk Solids Handl. 2014; 34(6): 38–46.
  • 20. Zamiralova M.E., Lodewijks G. Pipe conveyor test rigs: Design, application and test results - Part C. Bulk Solids Handl. 2015; 35(1): 42–49.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2e358dfb-5a77-4bcb-84df-69559292b69c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.