PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The effect of material gradient on the static and dynamic response of layered functionally graded material plate using finite element method

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article focuses on the finite element analysis (FEA) of the nonlinear behavior of a layered functionally graded material (FGM) plate as concerns displacement, stresses, critical buckling load and fundamental frequency. The material properties of each layer in an FGM plate are assessed according to a ceramic based simple power law distribution and the rules of mixture. The finite element model of a layered FGM plate is developed using ANSYS®15.0 software. The developed finite element model is used to study the static and dynamic responses of an FGM plate. In this paper, the effects of power law distribution, thickness ratio, aspect ratio and boundary conditions are investigated for central displacement, transverse shear stress, transverse normal stress, critical buckling load and fundamental frequency, and the obtained FEA results are in sound agreement with the literature test data results. Since the FGM is used in a high temperature environment, the FE analysis is performed for the FGM plate under a thermal field and then correlated. Finally, the FGM plate is analyzed under a thermomechanical load by using the current FE concept.
Rocznik
Strony
827--838
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
autor
  • Department of Mechanical Engineering, Mepco Schlenk Engineering College, Sivakasi, India
autor
  • Department of Mechanical Engineering, Mepco Schlenk Engineering College, Sivakasi, India
Bibliografia
  • [1] J.N. Reddy, “Analysis of functionally graded plates”, Inter-national Journal for Numerical Methods in Engineering, 47, 663–684 (2000).
  • [2] L.F.Qian, R.C.Batra, and L.M.Chen, “Static and dynamic deformations of thick functionally graded elastic plates by using higher˗order shear and normal deformable plate theory and meshless local Petrov–Galerkin method”, Composites Part B: Engineering35, (6–8), 685–697 (2004).
  • [3] A.M. Zenkour, “Generalized shear deformation theory for bending analysis of functionally graded plates”, Applied Mathemat-ical Modelling 30, 67˗84 (2004).
  • [4] V. Birman and L.W. Byrd, “Modeling and Analysis of Functionally Graded Materials and Structures” Applied Mechanics Reviews, 60, 195˗21 (2007).
  • [5] H. Matsunaga, “Stress analysis of functionally graded plates subjected to thermal and mechanical loadings” Composite Structures, 87, 344–357 (2009).
  • [6] M. Talha and B.N. Singh, “Static response and free vibration analysis of FGM plates using higher order shear deformation theory”, Applied Mathematical Modelling, 34, 3991–4011 (2010)
  • [7] M.K. Singha, T. Prakash, and M. Ganapathi, “Finite element analysis of functionally graded plates under transverse load” Finite Elements in Analysis and Design, 47, 453–460 (2011).
  • [8] D.K. Rao, P.J. Blessington, and R. Tarapada, “Finite Element Modeling and Analysis of Functionally Graded (FG) Composite Shell Structures” Procedia Engineering, 38, 3192‒3199 (2012).
  • [9] H.˗T. Thai and D.˗H. Choi, “Finite element formulation of various four unknown shear deformation theories for functionally graded plates” Finite Elements in Analysis and Design, 75, 50–61 (2013).
  • [10] T.H. Daouadji, A. Tounsi, and E.A.A. Bedia, “Analytical solution for bending analysis of functionally graded plates” Scientia Iranica B, 20(3), 516–523 (2013).
  • [11] J. Yang and Y. Chen, “Free vibration and buckling analyses of functionally graded beams with edge cracks” Composite Structures, 83, 48–60 (2008).
  • [12] X. Zhao, Y.Y. Lee, and K.M. Liew, “Mechanical and thermal buckling analysis of functionally graded plates” Composite Structures, 90, 161–171 (2009).
  • [13] M. Latifi, F. Farhatnia, and M. Kadkhodaei, “Buckling analysis of rectangular functionally graded plates under various edge conditions using Fourier series expansion” European Journal of Mechanics A/Solids 41, 16˗27 (2013).
  • [14] A. Amiri Rad and D. Panahandeh˗Shahraki, “Buckling of cracked functionally graded plates under tension” Thin˗Walled Structures, 8426–33 (2014).
  • [15] S. Abrate, “Free vibration, buckling, and static deflections of functionally graded plates” Composites Science and Technology, 66, 2383–2394 (2006).
  • [16] H. Matsunaga, “Free vibration and stability of functionally graded plates according to a 2˗D higher˗order deformation theory” Composite Structures, 82, 499–512 (2008).
  • [17] X. Zhao, Y.Y. Lee, and K.M. Liew, “Free vibration analysis of functionally graded plates using the element˗free kp˗Ritz method” Journal of Sound and Vibration, 319, 918–939 (2009).
  • [18] E. Efraim, “Accurate formula for determination of natural frequencies of FGM plates basing on frequencies of isotropic plates” Procedia Engineering, 10, 242–247 (2011).
  • [19] R. Javaheri and M.R. Eslami, “Buckling of functionally graded plates under in plane compressive loading”. ZAMM Journal, 82(4), 277‒283 (2002).
  • [20] F. Chu, J. He, L. Wang, and Z. Zhong, “Buckling analysis of functionally graded thin plate with inplane material inhomogeneity” Engineering Analysis with Boundary Elements, 65, 112–125 (2016).
  • [21] P. Malik and R. Kadoli, “Thermo˗elastic response of SUS316˗Al2O3functionally graded beams under various heat loads”, International Journal of Mechanical Sciences, 128˗129, 206˗223 (2017).
  • [22] M. Chmielewski and K. Pietrzak, “Metal˗ceramic functionally graded materials– manufacturing, characterization, application, Bull. Pol. Ac. Tech., 64(1), 151‒160 (2016).
  • [23] K.K. Zur, “Green’s function approach to frequency analysis of thin circular plates”, Bull. Pol. Ac. Tech., 64 (1), 181‒188 (2016).
  • [24] S.P. Timoshenko and S.W. Krieger, “Theory of Plates and Shells”, second edition, McGraw˗Hill International Editions, (1959).
  • [25] D.˗G. Zhang and Y.˗H. Zhou, “A theoretical analysis of FGM thin plates based on physical neutral surface”, Computational Materials Science, 44, 716–720 (2008).
  • [26] M.N.A. Gulshan Taj, A. Chakrabarti, and A.H. Sheikh, “Analysis of functionally graded plates using higher order shear deformation theory”, Applied Mathematical Modelling, 37, 8484˗8494 (2013).
  • [27] D.˗G. Zhang, “Modeling and analysis of FGM rectangular plates based on physical neutral surface and high order shear deformation theory”, International Journal of Mechanical Sciences, 68, 92‒104 (2013).
  • [28] R. Lal and N. Ahlawat, “Axisymmetric vibrations and buckling analysis of functionally graded circular plates via differential transform method” European Journal of Mechanics / ASolids, 52, 85‒94 (2015).
  • [29] H. Parandvar and M. Farid, “ Large amplitude vibration of FGM plates in thermal environment subjected to simultaneously static pressure and harmonic force using multimodal FEM”, Composite Structures, 141, 163‒171 (2016).
  • [30] K.K. Zur, “Quasi˗Green’s function approach to free vibration analysis of elastically supported functionally graded circular plates”, Composite Structures, 183, 600‒610 (2018).
  • [31] K.K. Zur, “Free vibration analysis of elastically supported functionally graded annular plates via quasi˗Green’s function method”, Composites Part B, 144, 37–55, (2018).
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2e32124b-a0ee-4766-a812-f1db3438cb7b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.