Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The Internet of Things has rapidly grown in the past years as emerging technology. Moreover, 5G networks start to offer communication infrastructure for applications of the Industrial Internet of Things (IIoT). However, due to energy limitations of IIoT devices and heterogeneity of 5G networks, managing IIoT networks is a challenging task. One of the most critical issues in IIoT that requires consideration is traffic routing that has a significant impact on energy consumption, and thus, lifetime of the network. Artificial Intelligence (AI) has been widely employed to solve complex scientific and practical problems. Such AI techniques as neural networks, fuzzy systems, genetic algorithms are commonly employed in wireless networks to promote their optimization, prediction, and management. This study suggests using an Adaptive Neuro-fuzzy Inference System (ANFIS) in 5G networks of IIoT for improving the routing process. A flow-chat of routing protocol was suggested. For input and output values of the ANFIS linguistic variables, terms and membership functions were defined. A rules base was developed. To improve the rule base of the ANFIS, a genetic algorithm was proposed. The operation of ANFIS was simulated in Matlab software.
Słowa kluczowe
Rocznik
Tom
Strony
935--941
Opis fizyczny
Bibliogr. 28 poz., rys.
Twórcy
autor
- Vinnytsia National Technical University
autor
- Comenius University in Bratislava
autor
- Vinnytsia National Technical University
autor
- Vinnytsia National Technical University
autor
- Vinnytsia National Technical University
Bibliografia
- [1] A. K. M. Bahalul Haque, Md. Oahiduzzaman Mondol Zihad, and Md. Rifat Hasan, “5G and Internet of Things-Integration Trends, Opportunities, and Future Research Avenues,” 5G and Beyond. Springer Nature Singapore, pp. 217-245, 2023. https://doi.org/10.1007/978-981-99-3668-7_11
- [2] R. Dallaev, T. Pisarenko, Ş. Ţălu, D. Sobola, J. Majzner, and N. Papež, “Current Applications and Challenges of the Internet of Things,” New Trends in Computer Sciences, vol. 1, no. 1, pp. 51-61, 2023. https://doi.org/10.3846/ntcs.2023.17891
- [3] S. Palarimath, P. M, T. K, M. Maqsood, M. A. Salam, and R. D. Palarimath, “Powering IoT Systems with 5G Wireless Communication: A Comprehensive Review,” 2023 8th International Conference on Communication and Electronics Systems (ICCES). IEEE, Jun. 2023. https://doi.org/10.1109/icces57224.2023.10192678
- [4] A. Kour, “A Review: Industrial Internet of Things using 5G,” International Journal for Research in Applied Science and Engineering Technology, vol. 11, no. 1, pp. 653-657, 2023. https://doi.org/10.22214/ijraset.2023.48657
- [5] B. Shah, “Fuzzy Energy Efficient Routing for Internet of Things (IoT),” 2018 Tenth International Conference on Ubiquitous and Future Networks (ICUFN). IEEE, Jul. 2018. https://doi.org/10.1109/icufn.2018.8437033
- [6] J. Marietta and B. Chandra Mohan, “A Review on Routing in Internet of Things,” Wireless Personal Communications, vol. 111, no. 1, pp. 209-233, 2019. https://doi.org/10.1007/s11277-019-06853-6
- [7] D. K. Shende, S. S.S, and Y. Angal, “A Comprehensive Survey of the Routing Schemes for IoT applications,” Scalable Computing: Practice and Experience, vol. 21, no. 2. Scalable Computing: Practice and Experience, pp. 203-216, 2020. https://doi.org/10.12694/scpe.v21i2.1667
- [8] D. Airehrour, J. Gutierrez, and S. K. Ray, “Secure routing for internet of things: A survey,” Journal of Network and Computer Applications, vol. 66, pp. 198-213, 2016. https://doi.org/10.1016/j.jnca.2016.03.006
- [9] S. D. Mali and K. Govinda, “A study on network routing attacks in IoT,” Materials Today: Proceedings, vol. 80, pp. 2997-3002, 2023. https://doi.org/10.1016/j.matpr.2021.07.092
- [10] N. Rane, S. Choudhary, and J. Rane, “Artificial Intelligence (AI) and Internet of Things (IoT) - based sensors for monitoring and controlling in architecture, engineering, and construction: applications, challenges, and opportunities,” SSRN Electronic Journal, 2023. https://doi.org/10.2139/ssrn.4642197
- [11] R. Kruse, S. Mostaghim, C. Borgelt, C. Braune, and M. Steinbrecher, Computational Intelligence. Springer International Publishing, 2022. https://doi.org/10.1007/978-3-030-42227-1
- [12] K. C. Park and D.-H. Shin, “Security assessment framework for IoT service,” Telecommunication Systems, vol. 64, no. 1, pp. 193-209, 2016. https://doi.org/10.1007/s11235-016-0168-0
- [13] M. Collotta and G. Pau, “Bluetooth for Internet of Things: A fuzzy approach to improve power management in smart homes,” Computers & Electrical Engineering, vol. 44, pp. 137-152, 2015. https://doi.org/10.1016/j.compeleceng.2015.01.005
- [14] M. Jutila, “An Adaptive Edge Router Enabling Internet of Things,” IEEE Internet of Things Journal, vol. 3, no. 6, pp. 1061-1069, 2016. https://doi.org/10.1109/jiot.2016.2550561
- [15] P. N. Mahalle, P. A. Thakre, N. R. Prasad, and R. Prasad, “A fuzzy approach to trust-based access control in internet of things,” Wireless VITAE, 2013. https://doi.org/10.1109/vitae.2013.6617083
- [16] X. Luo, Y. Lv, M. Zhou, W. Wang, and W. Zhao, “A Laguerre neural network-based ADP learning scheme with its application to tracking control in the Internet of Things,” Personal and Ubiquitous Computing, vol. 20, no. 3, pp. 361-372, 2016. https://doi.org/10.1007/s00779-016-0916-x
- [17] E. De Coninck et al., “Distributed Neural Networks for Internet of Things: The Big-Little Approach,” Internet of Things. IoT Infrastructures. Springer International Publishing, pp. 484-492, 2016. https://doi.org/10.1007/978-3-319-47075-7_52
- [18] C. Razafimandimby, V. Loscri, and A. M. Vegni, “A Neural Network and IoT Based Scheme for Performance Assessment in Internet of Robotic Things,” 2016 IEEE First International Conference on Internet-of-Things Design and Implementation (IoTDI). IEEE, Apr. 2016. https://doi.org/10.1109/iotdi.2015.10
- [19] T.-Y. Wu, G.-H. Liaw, S.-W. Huang, W.-T. Lee, and C.-C. Wu, “A GA- based mobile RFID localization scheme for internet of things,” Personal and Ubiquitous Computing, vol. 16, no. 3. pp. 245-258, 2011, https://doi.org/10.1007/s00779-011-0398-9
- [20] S.-J. Yoo, J. Park, S. Kim, and A. Shrestha, “Flying path optimization in UAV-assisted IoT sensor networks,” ICT Express, vol. 2, no. 3. pp. 140-144, 2016. https://doi.org/10.1016/j.icte.2016.08.005
- [21] V. Jain and M. Agrawal, “Applying Genetic Algorithm in Intrusion Detection System of IoT Applications,” 2020 4th International Conference on Trends in Electronics and Informatics (ICOEI), IEEE, Jun. 2020. https://doi.org/10.1109/icoei48184.2020.9143019
- [22] Y. Yang, “Optimization Strategy of IoT Sensor Configuration Based on Genetic Algorithm-Neural Network,” Journal of Sensors, vol. 2021, pp. 1-12, 2021. https://doi.org/10.1155/2021/5098013
- [23] B. Shah, “Fuzzy Energy Efficient Routing for Internet of Things (IoT),” 2018 Tenth International Conference on Ubiquitous and Future Networks (ICUFN), IEEE, Jul. 2018. https://doi.org/10.1109/icufn.2018.8437033
- [24] S. Kuwelkar and H. Virani, Enhancing the RPL Protocol Using an Artificial Neural Network for Sustainable IoT Infrastructure,” Transitioning to Sustainable Industry, Innovation and Infrastructure. MDPI, Jul. 04, 2023. https://doi.org/10.3390/books978-3-03897-869-5-6
- [25] F. Albalas, E. Alrabee, W. Mardini and A. Sawafta, "Energy-Aware Routing Approach in Internet of Things Using Genetic Algorithms," 2022 9th International Conference on Internet of Things: Systems, Management and Security (IOTSMS), Milan, pp. 1-6, 2022. https://doi.org/10.1109/IOTSMS58070.2022.1006203
- [26] M. A. Soliman, H. M. Hasanien, H. Z. Azazi, E. E. El‐kholy, and S. A. Mahmoud, “Hybrid ANFIS‐GA‐based control scheme for performance enhancement of a grid‐connected wind generator”, IET Renewable Power Generation, vol. 12, issue 7, 2018, pp. 832-843, https://doi.org/10.1049/iet-rpg.2017.0576
- [27] P.-H. Weng, F.-T. Liu, Y.-J. Chen, C.-Y. Chang, and R.-C. Hwang, “A Hybrid Supervised Neural Network Learning Algorithm,” 2008 3rd International Conference on Innovative Computing Information and Control. IEEE, 2008. https://doi.org/10.1109/icicic.2008.607
- [28] I. O. Olayode, L. K. Tartibu, and F. Justice Alex, “Comparative Study Analysis of ANFIS and ANFIS-GA Models on Flow of Vehicles at Road Intersections”, Applied Sciences, vol. 3, no. 2, p. 744, 2023. https://doi.org/10.3390/app13020744
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2e2f0729-97e2-498c-a48f-237d2056d257
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.