PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Predicting pedestrian lower limb fractures in real world vehicle crashes using a detailed human body leg model

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The purpose of this study was to evaluate the capability of a detailed FE human body lower limb mode, called HALL (Human Active Lower Limb) model, in predicting real world pedestrian injuries and to investigate injury mechanism of pedestrian lower limb in vehicle collisions. Methods: Two real world vehicle-to-pedestrian crashes with detailed information were selected. Then, a pedestrian model combining the HALL model and the upper body of the 50th% Chinese dummy model and vehicle front models were developed to reconstruct the selected real world crashes, and the predictions of the simulations were analyzed together with observations from the accident data. Results: The results show that the predictions of the HALL model for pedestrian lower limb long bone fractures match well with the observation from hospital data of the real world accidents, and the predicted thresholds of bending moment for tibia and femur fracture are close to the average values calculated from cadaver test data. Analysis of injury mechanism of pedestrian lower limb in collisions indicates that the relatively sharper bumper of minivan type vehicles can produce concentrated loading to the lower leg and a high risk of tibia/fibula fracture, while the relatively sharper and lower bonnet leading edge may cause concentrate loading to the thigh and high femur fracture risk. Conclusions: The findings imply that the HALL model could be used as an effective tool for predicting pedestrian lower limb injuries in vehicle collisions and improvements to the minivan bumper and sedan bonnet leading edge should be concerned further in vehicle design.
Rocznik
Strony
33--41
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
autor
  • School of Mechanical Engineering, Hunan University of Science and Technology, Xiangtan, China
autor
  • Medical Imaging Center, The First People’s Hospital of Chenzhou, Chenzhou, China
autor
  • Shanghai Key Laboratory of Forensic Medicine, Academy of Forensic Science, Ministry of Justice, Shanghai, China
autor
  • State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, China
autor
  • Loudi Vocational and Technical College, Loudi, China
autor
  • School of Mechanical Engineering, Hunan University of Science and Technology, Xiangtan, China
Bibliografia
  • [1] CHIDESTER C., ISENBERG R., Final report-the pedestrian crash data study, Proceedings of the 17th International Technical Conference on the Enhanced Safety of Vehicles (ESV), Amsterdam, Netherlands, 2001.
  • [2] HAN Y., YANG J., NISHIMOTO K., MIZUNO K., MATSUI Y., NAKANE D., WANAMI S., HITOSUGI M. Finite element analysis of kinematic behaviour and injuries to pedestrians in vehicle collisions, Int. J. Crashworthiness, 2012, 17 (2), 141–152.
  • [3] KERRIGAN J., DRINKWATER D., KAM C., MURPHY D., IVARSSON B., CRANDALL J., PATRIE J., Tolerance of the human leg and thigh in dynamic latero-medial bending, Int. J. Crashworthiness, 2004, 9 (6), 607–623.
  • [4] LI G., WANG F., OTTE D., CAI Z., SIMMS C., Have pedestrian subsystem tests improved passenger car front shape?, Accid. Anal. Prev., 2018, 115, 143–150.
  • [5] LI G., MA H., GUAN T., GAO G., Predicting safer vehicle front-end shapes for pedestrian lower limb protection via a numerical optimization framework, Int. J. Auto. Tech.-Kor., 2020, 21 (3), 749–756.
  • [6] LI G., YANG J., SIMMS C., The influence of gait stance on pedestrian lower limb injury risk, Accid. Anal. Prev., 2015, 85, 83–92.
  • [7] LI G., YANG J., SIMMS C., Safer passenger car front shapes for pedestrians: a computational approach to reduce overall pedestrian injury risk in real world accident scenarios, Accid. Anal. Prev., 2017, 100, 97–110.
  • [8] LI G., LYONS M, WANG B., YANG J., OTTE D., SIMMS C., The influence of passenger car front shape on pedestrian injury risk observed from german in-depth accident data, Accid. Anal. Prev., 2017, 101, 11–21.
  • [9] LI G., TAN Z., LV X., REN L., Numerical reconstruction of injuries in a real world minivan-to-pedestrian collision, Acta Bioeng. Biomech., 2019, 21 (2), 21–30.
  • [10] LINDER A., CLARK A., DOUGLAS C., FILDES B., YANG K., SPARKE L., Mathematical modeling of pedestrian crashes: review of pedestrian models and parameter study of the influence of the sedan vehicle contour, 2004 Road Safety Research, Policing and Education Conference, Perth, Australia, 2004.
  • [11] MA H., MAO Z., LI G., YAN L., MO F., Could an isolated human body lower limb model predict leg biomechanical response of Chinese pedestrians in vehicle collisions, Acta Bioeng. Biomech., 2020, 22 (3), 117–129.
  • [12] MARTINEZ L., GUERRA L., FERICHOLA G., GARCIA A., YANG J., Stiffness corridors of the European fleet for pedestrian simulation, Proceedings of the 20th International Technical Conference on the Enhanced Safety of Vehicles (ESV), Lyon, France, 2007.
  • [13] MATSUI Y., Effects of vehicle bumper height and impact velocity on type of lower extremity injury in vehicle-pedestrian accidents, Accid. Anal. Prev., 2005, 37 (4), 633–640.
  • [14] MATSUI Y., ISHIKAWA H., SASAKI A., Pedestrian injuries induced by the bonnet leading edge in current car-pedestrian accidents, SAE Technical Paper No. 1999-01-0713, 1999.
  • [15] MIZUNO Y., Summary of IHRA pedestrian safety WG activities (2005)-proposed test methods to evaluate pedestrian protection afforded by passenger cars, Proceedings of the 19th International Technical Conference on the Enhanced Safety of Vehicles (ESV), Paper No. 05-0138, 2005.
  • [16] MO F., ARNOUX P., CESARI D., MASSON C., Investigation of the injury threshold of knee ligaments by the parametric study of car-pedestrian impact conditions, Saf. Sci., 2014, 62, 58–67.
  • [17] MO F., ARNOUX P., JURE J., MASSON C., Injury tolerance of tibia for the car-pedestrian impact, Accid. Anal. Prev., 2012, 46, 18–25.
  • [18] MO F., LI F., BEHR M., XIAO Z., ZHANG G., DU X., A lower limb-pelvis finite element model with 3D active muscles, Ann. Biomed. Eng., 2018, 46 (1), 86–96.
  • [19] MO F., LUO S., TAN Z., SHANG B., LV X., ZHOU D., A human active lower limb model for Chinese pedestrian safety evaluation, J. Bionic Eng., 2021, 18, 1–15.
  • [20] OTTE D., HAASPER C., Characteristics on fractures of tibia and fibula in car impacts to pedestrians and bicyclists-influences of car bumper height and shape, Annual Proceedings/Association for the Advancement of Automotive Medicine, 2007, 51, 63–79.
  • [21] SIMMS C., WOOD D., Pedestrian and Cyclist Impact– A Biomechanical Perspective, Springer, 2009.
  • [22] TAN Z., GUO Y., LI G., YAN L., Kinematics and injury mechanism of cyclist lower limb in vehicle-to-bicycle collisions, J. Mech. Med. Biol., 2020, 20 (6), 2050035.
  • [23] UNTAROIU C., YUE N., SHIN J., A finite element model of the lower limb for simulating automotive impacts, Ann. Biomed. Eng., 2012, 41, 1–14.
  • [24] WANG F., WU J., HU L., YU C., WANG B., HUANG X., MILLER K., WITTEK A., Evaluation of the head protection effectiveness of cyclist helmets using full-scale computational biomechanics modelling of cycling accidents, J. Safety Res., 2021, DOI: 10.1016/j.jsr.2021.11.005.
  • [25] YANG J., Review of injury biomechanics in car–pedestrian collisions, Int. J. Veh. Saf., 2005, 1 (1/2/3), 100–117.
  • [26] YANG K., Basic Finite Element Method as Applied to Injury Biomechanics, Elsevier, 2018.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2e2cc95c-95fb-4d37-ba5c-e7b674d39835
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.