PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Spark Plasma Sintering/Field Assisted Sintering Technique as a Universal Method for the Synthesis, Densification and Bonding Processes for Metal, Ceramic and Composite Materials

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents the technology of powder sintering by the spark plasma sintering method, also known as the field assisted sintering technique. The mechanisms, compared to other sintering techniques, advantages of this system, applied modifications and the history of the development of this technique are presented. Spark Plasma Sintering (SPS) uses uniaxial pressing and pulses of electric current. The direct flow of current through the sintered material allows high heating rates to be reached. This has a positive effect on material compaction and prevents the grain growth of sintered compact. The SPS mechanism is based on high-energy spark discharges. A low-voltage current pulse increases the kinetics of diffusion processes. The SPS temperature is up to 500 ◦C lower than the sintering temperature using conventional methods. The phenomena that occur during sintering with the Field Assisted Sintering Technology (FAST)/SPS method give great results for consolidating all types of materials, including those which are nonconductive. This method is used, among others, in relation to metals, alloys and ceramics, including advanced and ultra-high-temperature ceramics. Due to the good results and universality of this method, in recent years it has been developed and often used in research institutions, but also in industry.
Rocznik
Strony
53--69
Opis fizyczny
Bibliogr. 39 poz., rys., wykr.
Twórcy
  • Łukasiewicz Research Network - Krakow Institute of Technology
autor
  • Łukasiewicz Research Network - Krakow Institute of Technology
  • Łukasiewicz Research Network - Krakow Institute of Technology
  • Łukasiewicz Research Network - Krakow Institute of Technology
  • Łukasiewicz Research Network - Krakow Institute of Technology
Bibliografia
  • Abe, J. O., A. P. I. Popoola, and O. M. Popoola. 2020. Consolidation of Ti6Al4V Alloy and Refractory Nitride Nanoparticles by Spark Plasma Sintering Method: Microstructure, Mechanical, Corrosion and Oxidation Characteristics. Materials Science and Engineering A 774 (January): 138920.
  • Anselmi-Tamburini, U., S. Gennari, J. E. Garay, and Z. A. Munir. 2005. Fundamental Investigations on the Spark Plasma Sintering/synthesis Process. Materials Science and Engineering: A 394 (1–2): 139–48.
  • Balima, Félix, Federico Bellin, Dominique Michau, Oudomsack Viraphong, Angéline Poulon-Quintin, U. Chan Chung, Alfazazi Dourfaye, and Alain Largeteau. 2018. High Pressure Pulsed Electric Current Activated Equipment (HP-SPS) for Material Processing. Materials and Design 139: 541–8.
  • Biesuz, Mattia, and Vincenzo M. Sglavo. 2019. Flash Sintering of Ceramics. Journal of the European Ceramic Society 39 (2–3): 115–43.
  • Biesuz, Mattia, Salvatore Grasso, and Vincenzo M. Sglavo. 2020. What’s New in Ceramics Sintering? A Short Report on the Latest Trends and Future Prospects. Current Opinion in Solid State and Materials Science 24 (5): 100868.
  • Clyens, S., and S. T. S. Al-Hassani. 1976. The Compaction of Powder Metallurgy Bars Using High Voltage Electrical Discharges. International Journal of Mechanical Sciences 18 (1): 37–40.
  • Conrad, H. 2002. Thermally Activated Plastic Flow of Metals and Ceramics with an Electric Field or Current. Materials Science and Engineering 322 (1–2): 100–7.
  • Cremer, G. D. 1944. Sintering Together Powders Metals Such as Bronze, Brass or Aluminum. U.S. Patent 2,355,954, August 15.
  • Ertug, B., ed. 2013. Sintering Applications. Croatia: InTech.
  • Fong, A. Y., H. Xu, K. Page, M. R. Dirmyer, Y. Kodera, S. J. Obrey, and J. E. Garay. 2014. Synthesis and Structural Characterization of Dense Polycrystalline Mg9Sn5, a Metastable Mg-Sn Phase. Journal of Alloys and Compounds 616: 333–9.
  • Giuntini, Diletta, Xialu Wei, Andrey L. Maximenko, Li Wei, Alexandra M. Ilyina, and Eugene A. Olevsky. 2013. Initial Stage of Free Pressureless Spark-Plasma Sintering of Vanadium Carbide: Determination of Surface Diffusion Parameters. International Journal of Refractory Metals and Hard Materials 41: 501–6.
  • Groza, Joanna R., and Antonios Zavaliangos. 2000. Sintering Activation by External Electrical Field. Materials Science and Engineering: A 287 (2): 171–7.
  • Hu, Zheng Yang, Zhao Hui Zhang, Xing Wang Cheng, Fu Chi Wang, Yi Fan Zhang, and Sheng Lin Li. 2020. A Review of Multi-Physical Fields Induced Phenomena and Effects in Spark Plasma Sintering: Fundamentals and Applications. Materials and Design 191: 108662.
  • Inoue, K. 1966. Electric-Discharge Sintering. U.S. Patent 3,241,956 A, March 22.
  • Jaworska, Lucyna, Piotr Putyra, Piotr Wyżga, and Paweł Figiel. 2013. Nowoczesne metody spiekania. Annales Universitatis Paedagogicae Cracoviensis 6: 35–40.
  • Kessel, H. U. 2009. Sintered Materials on the Way to Production by Means of Modern SPS Technologies. Ceramic Forum International Berichte Der Deutschen Keramischen Gesellschaft 10: 145–52.
  • Klimczyk, Piotr, M. E. Cura, A. M. Vlaicu, I. Mercioniu, Piotr Wyżga, Lucyna Jaworska, and S.-P. Hannula. 2016. Al2O3-cBN Composites Sintered by SPS and HPHT Methods. Journal of the European Ceramic Society 36 (7): 1783–89.
  • Klimczyk, Piotr, Piotr Wyżga, Jolanta Cyboroń, Jolanta Laszkiewicz-Łukasik, Marcin Podsiadło, Sławomir Cygan, and Lucyna Jaworska. 2020. Phase Stability and Mechanical Properties of Al2O3-cBN Composites Prepared via Spark Plasma Sintering. Diamond and Related Materials 104 (April): 107762.
  • Lis, Jerzy, and Roman Pampuch. 2000. Spiekanie. Kraków: Wydawnictwa AGH.
  • Liu, Jianghao, Zhengyi Fu, Weimin Wang, Jinyong Zhang, Hao Wang, Yucheng Wang, Soowohn Lee, and Koichi Niihara. 2014. Ultra-High Heating Rate Densification of Nanocrystalline Magnesia at High Pressure and Investigation on Densification Mechanisms. Journal of the European Ceramic Society 34 (12): 3095–102.
  • Michalski, Andrzej, and Dariusz Siemiaszko. 2006. Impulsowo plazmowe spiekanie nanokrystalicznych węglików WC-12Co. Inżynieria Materiałowa 3: 629–31.
  • Nygren, M. 2007. SPS Processing of Nano-Structured Ceramics. Journal of Iron and Steel Research International 14 (5 Suppl. 1): 99–103.
  • Oczoś, Kazimierz. 1996. Kształtowanie ceramicznych materiałów technicznych. Rzeszów: Oficyna Wydawnicza Politechniki Rzeszowskiej.
  • Olevsky, Eugene A., Stephen M. Rolfing, and Andrey L. Maximenko. 2016. Flash (Ultra-Rapid) Spark-Plasma Sintering of Silicon Carbide. Scientific Report 6: 33408.
  • Omori, M. 2000. Sintering, Consolidation, Reaction and Crystal Growth by the Spark Plasma System (SPS). Materials Science and Engineering A287: 183–8.
  • Peng, Y. B., W. Zhang, X. L. Mei, H. J. Wang, M. Y. Zhang, L. Wang, X. F. Li, and Y. Hu. 2020. Microstructures and Mechanical Properties of FeCoCrNi-Mo High Entropy Alloys Prepared by Spark Plasma Sintering and Vacuum Hot-Pressed Sintering. Materials Today Communications 24 (February).
  • Putyra, Piotr, Lucyna Jaworska, Marcin Podsiadło, and Jolanta Laszkiewicz-Łukasik. 2015. Materiały ceramiczne spiekane metodą SPS. Materiały Kompozytowe 4: 42–46.
  • Raichenko, A. I., G. L. Burenkov, and V. I. Leshchinsky. 1976. Theoretical Analysis of the Elementary Act of Electric Discharge Sintering. Physics of Sintering 5 (2): 215–25.
  • Somiya, Shigeyuki. 2013. Handbook of Advanced Ceramics: Materials, Applications, Processing, and Properties, 2nd ed. Waltham, Oxford, Amsterdam: Elsevier, Academic Press.
  • Somiya, Shigeyuki, and Masao Tokita. 2013. Chapter 11.2.3: Spark Plasma Sintering (SPS) Method, Systems, and Applications. In Handbook of Advanced Ceramics. Waltham, Oxford, Amsterdam: Elsevier, Academic Press, pp. 1149–77.
  • Suárez, M., A. Fernández, J. L. Menéndez, R. Torrecillas, H. U. Kessel, J. Hennicke, R. Kirchner, and T. Kessel. 2013. Chapter 13: Challenges and Opportunities for Spark Plasma Sintering: A Key Technology for a New Generation of Materials. In Sintering Applications. Edited by Burcu Ertug. Croatia: InTech.
  • Suffner, J., D. Wang, and H. Hahn. 2010. Enhancing Superplasticity of ZrO2 (Y2O3)-Al2O3 Composites Prepared by Spark Plasma Sintering of Metastable Powders. Materials Science and Engineering A 527 (29–30): 7885–92.
  • Taylor, G. F. 1932. Improvements in and Relating to Methods of and Apparatus for Producing Hard Metal Compositions. GB Patent No. 385629.
  • Taylor, G. F. 1933. Apparatus for Making Hard Metal Compositions. U.S. Patent 1,896,854, February 7.
  • Vanmeensel, K., A. Laptev, J. Hennicke, J. Vleugels, and O. Vanderbiest. 2005. Modelling of the Temperature Distribution during Field Assisted Sintering. Acta Materialia 53 (16): 4379–88.
  • Web of Science. n.d. Available online: https://apps.webofknowledge.com/summary.do?product=WOS&search_mode=GeneralSearch&qid=5&SID=R1miR8IcLkJ99i7kyhj (accessed on 27 November 2020).
  • Wei, Kaya, Joshua Martin, and George S. Nolas. 2014. Synthesis, SPS Processing and Low Temperature Transport Properties of Polycrystalline FeSb2 with Nano-Scale Grains. Materials Letters 122: 289–91.
  • Xiao, Zhuohao, Shijin Yu, Yueming Li, Shuangchen Ruan, Ling Bing Kong, Qing Huang, Zhengren Huang, Kun Zhou, Haibin Su, Zhengjun Yao, and et al. 2020. Materials Development and Potential Applications of Transparent Ceramics: A Review. Materials Science and Engineering R: Reports 139: 100518.
  • Zhang, Jing. 2010. Field Activated Sintering Technology: Multi-Physics Phenomena Modeling. Saarbrücken: Lambert Academic Publishing AG & Co.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2e2b46a5-d727-4859-a911-3bf7e4eaa220
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.