PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Tensile validation tests with failure criteria comparison for various GFRP laminates

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Walidacja testów rozciągania z porównaniem kryteriów zniszczenia dla różnych laminatów GFRP
Języki publikacji
EN
Abstrakty
EN
The paper studies the mechanical properties of glass fibre reinforced polymers (GFRP) with various types and orientation of reinforcement. Analyzed specimens manufactured in the infusion process are made of polymer vinyl ester resin reinforced with glass fibres. Several samples were examined containing different plies and various fibres orientation [0, 90] or [+45, –45]. To assess the mechanical parameters of laminates, a series of experimental tests were carried out. The samples were subjected to the uniaxial tensile tests, which allowed us to obtain substitute parameters, such as modulus of elasticity or strength. After all, results from experiments were used to validate the numerical model. A computational model was developed employing ABAQUS software using the Finite Element Method (FEM). The analysis was performed to verify and compare the results obtained from numerical calculations with the experiments. Additionally, the following failure criteria were studied, based on the index of failure IF Maximum Stress, Maximum Strain, Tsai-Hill, and Tsai-Wu. The results confirmed the assumptions made for the footbridge's design purpose, which is made using examined material. Moreover, comparing the experimental and numerical results found that in the linear-elastic range of the material, they are consistent, and there is no significant difference in results.
PL
W artykule zbadano właściwości mechaniczne polimerów wzmocnionych włóknem szklanym (GFRP) o różnych typach i orientacji zbrojenia. Analizowane próbki, wytworzone w procesie infuzji, wykonane są z polimerowej żywicy winyloestrowej wzmocnionej włóknem szklanym. Zbadano kilka próbek zawierających różną liczbę warstw, a także różną orientację włókien [0/90] lub [+45/–45]. Aby ocenić parametry mechaniczne laminatów, przeprowadzono szereg badań eksperymentalnych. Próbki poddano testom jednoosiowego rozciągania, co pozwoliło uzyskać parametry zastępcze, takie jak moduł sprężystości czy wytrzymałość. Wyniki eksperymentów posłużyły do walidacji modelu numerycznego. Model obliczeniowy opracowano za pomocą oprogramowania ABAQUS z wykorzystaniem metody elementów skończonych (MES). Analizę przeprowadzono w celu zweryfikowania i porównania wyników otrzymanych z obliczeń numerycznych z wynikami eksperymentów. Dodatkowo zbadano następujące kryteria zniszczenia, w oparciu o wskaźnik zniszczenia IF: Maksymalne naprężenie, Maksymalne odkształcenie, Tsai-Hill i Tsai-Wu. Wyniki potwierdziły założenia przyjęte przy projektowaniu kładki, którą wykonano z badanego materiału. Ponadto porównując wyniki eksperymentalne i numeryczne stwierdzono, że w zakresie liniowo-sprężystym materiału są one spójne i nie ma istotnych różnic w wynikach.
Rocznik
Strony
525--541
Opis fizyczny
Bibliogr. 26 poz., il., tab.
Twórcy
  • Gdańsk University of Technology, Faculty of Civil and Environmental Engineering, Gdańsk
  • Gdańsk University of Technology, Faculty of Civil and Environmental Engineering, Gdańsk
Bibliografia
  • [1] H. Altenbach, J. Altenbach, and W. Kissing, Mechanics of Composite Structural Elements. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004.
  • [2] E. Barbero, J. Fernández-Sáez, and C. Navarro, “Statistical analysis of the mechanical properties of composite materials,” Composites Part B: Engineering, vol. 31, no. 5, pp. 375-381, Jul. 2000. https://doi.org/10.1016/S1359-8368(00)00027-5
  • [3] J. Chróścielewski, T. Ferenc, T. Mikulski, M. Miśkiewicz, and Ł. Pyrzowski, “Numerical modeling and experimental validation of full-scale segment to support design of novel GFRP footbridge,” Composite Structures, vol. 213, pp. 299-307, Apr. 2019. https://doi.org/10.1016/j.compstruct.2019.01.089
  • [4] P. Colombi and C. Poggi, “An experimental, analytical and numerical study of the static behavior of steel beams reinforced by pultruded CFRP strips,” Composites Part B: Engineering, vol. 37, no. 1, pp. 64-73, Jan. 2006. https://doi.org/.1016/j.compositesb.2005.03.002
  • [5] S. C. M. D’Aguiar and E. Parente Junior, “Local buckling and post-critical behavior of thin-walled composite channel section columns,” Latin American Journal of Solids and Structures, vol. 15, no. 7, Jul. 2018. https://doi.org/10.1590/1679-78254884
  • [6] I. Danilov, “Some Aspects of CFRP Steel Structures Reinforcement in Civil Engineering,” Procedia Engineering, vol. 153, pp. 124-130, 2016. https://doi.org/10.1016/j.proeng.2016.08.091
  • [7] J. Di, L. Cao, and J. Han, “Experimental Study on the Shear Behavior of GFRP-Concrete Composite Beam Connections,” Materials, vol. 13, no. 5, p. 1067, Feb. 2020. https://doi.org/10.3390/ma13051067
  • [8] H. M. Elsanadedy, Y. A. Al-Salloum, S. H. Alsayed, and R. A. Iqbal, “Experimental and numerical investigation of size effects in FRP-wrapped concrete columns,” Construction and Building Materials, vol. 29, pp. 56-72, Apr. 2012. https://doi.org/10.1016/j.conbuildmat.2011.10.025
  • [9] T. Ferenc, Ł. Pyrzowski, J. Chróścielewski, and T. Mikulski, “Sensitivity analysis in design process of sandwich Ushaped composite footbridge,” in Shell Structures: Theory and Applications Volume 4, CRC Press, pp. 413-416, 2017. https://doi.org/10.1201/9781315166605-94
  • [10] R. Haj-Ali and H. Kilic, “Non-linear behavior of pultruded FRP composites,” Composites Part B: Engineering, vol. 33, no. 3, pp. 173-191, Apr. 2002. https://doi.org/10.1016/S1359-8368(02)00011-2
  • [11] M. Heshmati, R. Haghani, and M. Al-Emrani, “Environmental durability of adhesively bonded FRP/steel joints in civil engineering applications: State of the art,” Composites Part B: Engineering, vol. 81, pp. 259-275, Nov. 2015. https://doi.org/10.1016/j.compositesb.2015.07.014
  • [12] K. Kaw, Mechanics of Composite Materials. CRC Press, 2005.
  • [13] M. Klasztorny, D. B. Nycz, R. K. Romanowski, P. Gotowicki, A. Kiczko, and D. Rudnik, “Effects of Operating Temperatures and Accelerated Environmental Ageing on the Mechanical Properties of a Glass-Vinylester Composite,” Mechanics of Composite Materials, vol. 53, no. 3, pp. 335-350, Jul. 2017. https://doi.org/10.1007/s11029-017-9665-9
  • [14] I. Kreja, “A literature review on computational models for laminated composite and sandwich panels,” Open Engineering, vol. 1, no. 1, Jan. 2011. https://doi.org/10.2478/s13531-011-0005-x
  • [15] S. Moy, “Advanced fiber-reinforced polymer (FRP) composites for civil engineering applications,” in Developments in Fiber-Reinforced Polymer (FRP) Composites for Civil Engineering, Elsevier, pp. 177-204, 2013. https://doi.org/10.1533/9780857098955.2.177
  • [16] J. N. Reddy, “Theory and Analysis of Laminated Composite Plates,” in Mechanics of Composite Materials and Structures, Dordrecht: Springer Netherlands, pp. 1-79, 1999.
  • [17] J. N. Reddy, “A Simple Higher-Order Theory for Laminated Composite Plates,” Journal of Applied Mechanics, vol. 51, no. 4, pp. 745-752, Dec. 1984. https://doi.org/10.1115/1.3167719
  • [18] M. Rostami, K. Sennah, and S. Hedjazi, “GFRP Bars Anchorage Resistance in a GFRP-Reinforced Concrete Bridge Barrier,” Materials, vol. 12, no. 15, p. 2485, Aug. 2019. https://doi.org/10.3390/ma12152485
  • [19] A. Sabik and I. Kreja, “Linear analysis of laminated multilayered plates with the application of zig-zag function,” Archives of Civil and Mechanical Engineering, vol. 8, no. 4, pp. 61-72, Jan. 2008. https://doi.org/10.1016/S1644-9665(12)60122-8
  • [20] P. P. Sankholkar, C. P. Pantelides, and T. A. Hales, “Confinement Model for Concrete Columns Reinforced with GFRP Spirals,” Journal of Composites for Construction, vol. 22, no. 3, p. 04018007, Jun. 2018. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000843
  • [21] Wen and S. Yazdani, “Anisotropic damage model for woven fabric composites during tension-tension fatigue,” Composite Structures, vol. 82, no. 1, pp. 127-131, Jan. 2008. https://doi.org/10.1016/j.compstruct.2007.01.003
  • [22] H. Xin, Y. Liu, A. S. Mosallam, J. He, and A. Du, “Evaluation on material behaviors of pultruded glass fiber reinforced polymer (GFRP) laminates,” Composite Structures, vol. 182, pp. 283-300, Dec. 2017. https://doi.org/10.1016/j.compstruct.2017.09.006
  • [23] H. Xin, A. Mosallam, Y. Liu, C. Wang, and Y. Zhang, “Analytical and experimental evaluation of flexural behavior of FRP pultruded composite profiles for bridge deck structural design,” Construction and Building Materials, vol. 150, pp. 123-149, Sep. 2017. https://doi.org/10.1016/j.conbuildmat.2017.05.212
  • [24] J. E. Yetman, A. J. Sobey, J. I. R. Blake, and R. A. Shenoi, “Mechanical and fracture properties of glass vinylester interfaces,” Composites Part B: Engineering, vol. 130, pp. 38-45, Dec. 2017. https://doi.org/10.1016/j.compositesb.2017.07.011
  • [25] S. Zhang, C. Caprani, and A. Heidarpour, “Influence of fibre orientation on pultruded GFRP material properties,” Composite Structures, vol. 204, pp. 368-377, Nov. 2018. https://doi.org/10.1016/j.compstruct.2018.07.104
  • [26] Determination of tensile properties of plastics. Part 1: General principles, Geneva, Switzerland, 1993.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2e298fa8-8512-4fba-83a1-6c38784f8fbf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.