PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Metody sztucznej inteligencji w projektowaniu i eksploatacji systemów zaopatrzenia w wodę

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Artificial Intelligence Methods in the Design and Operation of Water Supply Systems
Języki publikacji
PL
Abstrakty
EN
Numerical methods are widely used for many years in the design and operation of water supply systems. Computer technology is characterized by very dynamic progress in the field of hardware and software. Specialized computer programs offer more and more features, especially in the field of data entry and viewing the results, but still operate on the basis of pre-defined algorithms. Currently we are dealing with a turbulent development of artificial intelligence techniques. Probably will never computational programs that completely will replace the operator of the need to make key decisions, but in recent years the aim is to develop computer programs that will be characterized by at least a small degree of creativity. For this purpose, the traditional calculation programs are supplemented by artificial intelligence methods, including artificial neural networks, expert systems, heuristic methods. The above trend can also be observed in issues related to water supply in the problems of design and operational. The literature proposals for the use of artificial intelligence at the stage of water treatment, disinfection, pumping, hydraulic design and simulation of water distribution systems and other components. Have taken a lot of optimization problems that are very difficult to solve by conventional methods. In this paper, some examples of the use of artificial intelligence methods in problems of water supply, indicating that these are the solutions that pave the way for the implementation in practice of design and operation. A wide range of artificial intelligence methods requires careful analysis that the method can be applied to individual problems. Also require a thorough knowledge of ongoing work in this regard.
Rocznik
Strony
1527--1544
Opis fizyczny
Bibliogr. 91 poz.
Twórcy
autor
  • Politechnika Warszawska
  • Politechnika Białostocka
autor
  • Politechnika Koszalińska
Bibliografia
  • 1. Arsene C., Al-Dabass D., Hartley J.: Decision Support System for Water Distribution Systems Based on Neural Networks and Graphs. Proceedings of the 14th International Conference on Modelling and Simulation, 315–323, Cambridge, UK, 2012.
  • 2. Bargiela A.: High performance neural optimization for real time pressure control. Proceedings of High Performance Computing Conference HPC Asia’95, Chap. AL34, 1–8, Taipei, 1995.
  • 3. Baxter Ch.W., Tupas R-R.T, Zhang Q., Shariff R., Stanley S., Coffey B.M.,Graff K.G.: Artificial Intelligence Systems for Water Treatment Plant Optimization. AWWA, 2001.
  • 4. Bishop C. M.: Neural Networks for Pattern Recognition. Oxford University Press, 1996.
  • 5. Bougadis J., Adamowski K., Diduch R.: Short-term municipal water demand forecasting. Hydrological Processes, 19, 1, 137–148, 2005.
  • 6. Bowden G.J., Nixon J.B., Dandy G.C., Maier, H. R., Holmes, M.: Forecasting chlorine residuals in a water distribution system using a general regression neural network. Mathematical and Computer Modelling, 44, 5–6, 469–484, 2006.
  • 7. Bubnicki Z., Grzech A.: Inżynieria wiedzy i systemy ekspertowe. Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław 2000.
  • 8. Bubtiena A.M., ElshafieA.H., Jafaar O.: Application of Artificial Neural Networks Modeling Water Networks. Proceedings of the 7th International Colloquium on Signal Processing and its Applications, IEEE, 2011.
  • 9. Bunn S., Helms S.: Application of an Expert System to Control Treated Water Distribution. Proceedings of the 26th Annual Water Resources Planning and Management Conference (WRPMD'99), 1–7, 1999.
  • 10. Changa N.B., Pongsanonea N.P., Ernestb A.: Comparisons between a rule-based expert system and optimization models for sensor deployment in a small drinking water network. Expert Systems with Applications, 38, 8, 10685–10695 (2011).
  • 11. Cichosz P.: Systemy uczące się. Wydawnictwa Naukowo-Techniczne, Warszawa 2000.
  • 12. Cieżak W., Malinowski P., Siwoń Z.: Metodologia budowy neuronowego modelu prognostycznego godzinowego rozbioru wody. Gaz, Woda i Technika Sanitarna, Nr 9, 9–12 (2005).
  • 13. Coulbeck B., Ulanicki B. Rance J.P., Deviatkov, V.V., Kosov, S., Glukhovsky, I.: Pressure control of a Moscow water supply system using expert system technology, Proceedings of the 35th IEEE Conference on Decision and Control, 4, 4498–4499 (1996).
  • 14. Coulin J., Peel C., Montague G.A.: The application of hybrid neural network models to water treatment. Proceedings of the IASTED International Conference. Artificial Inteligence, Expert Systems and Neural Networks,346–349 (1996).
  • 15. Creaco, E., Pezzinga, G.: Embedding linear programming in multi objective genetic algorithms for reducing the size of the search space with application to leakage minimization in water distribution networks. Environmental Modelling & Software, 2014.
  • 16. Cubero R.G.: Neural Networks for water demand time-series forecasting. Lecture Notes in Computer Science, 540, 453–460, Springer-Verlag 1991.
  • 17. Czapczuk A.: System ekspertowy do oceny przepływów i strat ciśnienia w układzie dystrybucji wody. Dysertacja, Wydział Inżynierii Środowiska, Politechnika Warszawska, Warszawa 2013.
  • 18. Damas M., Salmeròn M., Ortega J.: ANNs and GAs for predictive controlling of water supply networks. Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks, 4, 365–372, Como, Italy 2000.
  • 19. Dandy, G.C., Simpson, A.R., Murphy, L.J.: An improved genetic algorithm for pipe network optimisation. Water Resources Research, 32, 2, 449–58 (1996).
  • 20. Dawidowicz J.: Diagnostyka procesu obliczeń systemu dystrybucji wody z zastosowaniem modelowania neuronowego. Rozprawy Naukowe, Oficyna Wydawnicza Politechniki Białostockiej, Białystok 2015.
  • 21. Dawidowicz J.: Indukcja drzewa decyzyjnego przeznaczonego do oceny przebiegu linii ciśnienia w sieci wodociągowej. Zeszyty Naukowe Politechniki Białostockiej, Inżynieria Środowiska, 17, 91–102, Białystok 2006.
  • 22. Dawidowicz J.: Obliczanie współczynnika strat liniowych λ za pomocą sztucznych sieci neuronowych. Ekonomia i Środowisko, 4, 177–186 (2013).
  • 23. Dawidowicz J.: System ekspertowy do oceny układu systemu dystrybucji wody sporządzony za pomocą wnioskowania indukcyjnego. Rocznik Ochrona Środowiska (Annual Set the Environment Protection), 14, 650– 659 (2012).
  • 24. Deveughele S., Do-Quang Z.: Neural networks: An efficient approach to predict on-line the optimal coagulant dose. Water Science and Technology: Water Supply, 4, 5–6, 87–94, IWA Publishing, London 2004.
  • 25. Dorigo M., Stützle T.: Ant Colony Optimization. Bradford Company, Scituate, USA 2004.
  • 26. Eberhart R.C., Shi Y., Kennedy J.: Swarm Intelligence. Morgan Kaufmann, 2001.
  • 27. Evans J., Enoch C., Johnson M., Williams P.: Intelligent based autocoagulation control applied to a water treatment works. Proceedings of the UKACC International Conference on Control‘ 98, 1, 141–145 (1998).
  • 28. Fanni A., Liberatore S., Sechi G. M., Soro M., Zuddas P.: Optimization of Water Distribution Systems by a Tabu Search Metaheuristic. Proceedings of the 7th IFORMS Computing Society Conference, Cancun, Mexico 2000.
  • 29. Gabrys B. Bargiela A.: An integrated neural based system for state estimation and confidence limit analysis in water networks. Proceedings of ESS 96. 8th European Simulation Symposium. Simulation in Industry, 2, 398–402 (1996).
  • 30. Gabrys B., Bargiela A.: Neural simulation of water systems for efficient state estimation. Proceedings of European Simulation Multiconference “Modelling and Simulation”, 775–779 (1995).
  • 31. Gibbs M.S., Morgan N., Maier H.R., Dandy G.C., Nixon J.B., Holmes M.: Investigation into the relationship between chlorine decay and water distribution parameters using data driven methods. Mathematical and Computer Modelling, 44, 5–6, 485–498 (2006).
  • 32. Glover F.: Tabu Search and Adaptive Memory Programming – Advances, Applications and Challenges. Operations Research/Computer Science Interfaces Series, 7, 1–75 (1997).
  • 33. Goldberg D.E.: Algorytmy genetyczne i ich zastosowania. WNT, Warszawa 2003.
  • 34. Haytham A., Kwamura A., Jinno K.: Applications of artificial neural networks for optimal pressure regulation in supervisory water distribution networks. Memoirs of the Faculty of Engineering, 65, 29–51, Kyushu University, Fukuoka, Japan 2005.
  • 35. Jafar R., Shahrour I., Juran I.: Application of Artificial Neural Networks (ANN) to model the failure of urban water mains. Mathematical and Computer Modelling, 51, 1170–1180 (2010).
  • 36. Jain D.A., Ormsbee L.E.: Short-term water demand forecast modeling techniques – Conventional methods versus AI. Journal American Water Works Association, 94, 7, 64–72 (2002).
  • 37. Leon C., Martin S., Luque J., Vazques M.: EXPLORE: expert system for water networks management. Proceedings IEEE of 9th Mediterranean Electrotechnical Conference (MELECON '98), 1, 197–201 (1998).
  • 38. Licznar P., Łomotowski J.: Prognozowanie dobowych rozbiorów wody przy wykorzystaniu sztucznych sieci neuronowych. Materiały VI Międzynarodowej Konferencji „Zaopatrzenie w Wodę Miast i Wsi”, PZiTS Oddział Wielkopolski, 1751–1783, Poznań 2004.
  • 39. Lihui M., Kunlun X., Suiqing L.: Using Radial Basis Function Neural Networks to Calibrate Water Quality Model. International Journal of Intelligent Systems and Technologies (IJIST), 3, 2, 90–98 (2008).
  • 40. Lingireddy S., Ormsbee L.E.: Optimal control of water supply pumping systems using genetic algorithms and artificial neural networks. Proceedings of The International Federation for Automatic Control Symposium on Large Scale Systems '95, London, UK 1995.
  • 41. Lingireddy S., Ormsbee L.E.: Neural Networks in Optimal Calibration of Water Distribution Systems. In Artificial Neural Networks for Civil Engineers: Advanced Features and Applications, Edited by Flood I., Kartam N., ASCE, 53–76 (1998).
  • 42. Lingireddy S., Brion G.M.: Artificial neural networks in water supply engineering. In Lingireddy S., Brion G.M. (Eds.), Artificial Neural Networks
  • 43. Maier H., Simpson A., Zecchin A., Foong W., Phang K., Seah H., Tan, C.: Ant colony optimization for design of water distribution systems. Water Resources Planning and Management, ASCE, 129, 3, 200–209 (2003).
  • 44. Michalewicz Z.: Algorytmy genetyczne + struktury danych = program ewolucyjne. WNT, Warszawa 2003.
  • 45. Mingming Li, Shuming Liu, Ling Zhang, Huanhuan Wang, Fanlin Meng, Lu Bai: Non-dominated Sorting Genetic Algorithms-Based on Multiobjective Optimization Model in the Water Distribution System. ProcediaEngineering, 37, 309 – 313 (2012).
  • 46. Mirsepassi A., Cathers B., Dharmappa H.B.: Application of artificial neural networks to the real time operation of water treatment plants. Proceedings of International Conference on Neural networks (ICNN’95), IEEE, 1, 516–521 (1995).
  • 47. Montalvo I., Izquierdo J., Pérez R., Tung M.M.: Particle Swarm Optimization applied to the design of water supply systems. Computers & Mathematics with Applications, 56, 3, 769–776 (2008).
  • 48. Montalvo I., Izquierdo J., Schwarze S., Pérez-García R.: Multiobjective particle swarm optimization applied to water distribution systems design: An approach with human interaction. Computers & Mathematics with Applications, 52 (7–8), 1219–1227 (2010).
  • 49. Monuce S.R., Day A.J., Wood A.S., Khan A., Widdop P.D., Machell J.:A neural network approach to burst detection. Water Science & Technology, 45, 4/5, 237–246 (2002).
  • 50. Monuce S.R., Machell J.: Burst detection using hydraulic data from water distribution systems with artificial neural networks. Urban Water Journal, 3, 1, 21–31 (2006).
  • 51. Mulawka J.J.: Systemy ekspertowe. Wydawnictwa Naukowo-Techniczne, Warszawa 1996.
  • 52. Muszyński K., Knapik K.: Metoda sztucznych sieci neuronowych w bieżącym prognozowaniu zapotrzebowania na wodę. Materiały IV Ogólnopolskiej Konferencji Naukowo-Technicznej „Aktualne zagadnienia w uzdatnianiu i dystrybucji wody”, INSTAL, 6, 67–71, Szczyrk 2007.
  • 53. Chun M.G., Kwak K.C., Ryu J.W.: Application of ANFIS for coagulant dosing process in a water purification plant. Proceedings FUZZ-IEEE’99 International Fuzzy Systems Conference, 3, 1743–1748 (1999).
  • 54. Narate L., Chan Ch.W., Mason R., Tontiwachwuthikul P.: A toolset for construction of hybrid intelligent forecasting systems: application for water demand prediction. Artificial Intelligence in Engineering, 13, 1, 21–42 (1999).
  • 55. Negnevitsky M.: Artificial Intelligence: A Guide to Intelligent Systems.Addison-Wesley, 2004.
  • 56. Niederliński A.: Regułowe systemy ekspertowe. Wydawnictwo Pracowni Komputerowej Jacka Skalmierskiego, Gliwice 2000.
  • 57. Quinlan J.R.: C 4.5 Program for Machine Learning. Morgan Kaufmann, San Mateo, CA 1993.
  • 58. Quinlan J.R.: Induction of decision trees. Machine Learning, 1, 81–106 (1986).
  • 59. Ribeiro L., da Conceicao Cunha M.: Tabu search algorithms for wate rnetwork optimization. European Journal of Operational Research, 157, 746–758 (2004).
  • 60. Rodriguez M.J., Milot J., Sėrodes J.B.: Predicting trihalomethane formation in chlorinated waters using multivariate regression and neuralnetworks. Journal of Water Supply Research and Technology-Aqua, 52, 3, 199–215 (2003).
  • 61. Rodriguez M.J., Sėrodes J.B., Cote P.A.: Advanced chlorination control in drinking water systems using artificial neural networks. Proceedings of the IWSA International Specialized Conference on New Developments in Modelling, Monitoring and Control of Water Supply Systems, Water Supply, 15, 2, 159–168 (1997).
  • 62. Rodriguez M.J., West J.R., Powell J., Sėrodes J.B.: Application of two approaches to model chlorine residuals in Severn Trent Water distribution systems. Water Sciences and Technology, 36, 5, 317–324 (1997).
  • 63. Rojek I.: Classifier Models in Intelligent Support System for Water Network Management. Polish Journal of Environmental Studies, 17, 4C, 62– 66 (2008).
  • 64. Rojek I.: Projektowanie systemu informatycznego zarządzania miejską siecią wodociągową. Monografia, Instytut Badań Systemowych, Polska Akademia Nauk, seria Badania Systemowe – Inżynieria Środowiska, 57, Warszawa 2007.
  • 65. Sacluti F. R.: Modeling Water Distribution Pipe Failures Using Artificial Neural Networks. University of Alberta 1999.
  • 66. Sadatiyan Abkenar S.M., et al.: Evaluation of genetic algorithms using discrete and continuous methods for pump optimization of water distribution systems. Sustain. Comput.: Inform. Syst., 2014.
  • 67. Saldarriaga J., Gómez R., Salas D.: Artificial intelligence methods applicability on water distribution networks calibration. Critical Transitions in Water and Environmental Resources Management, 1–11 (2004).
  • 68. Savic D., Walters G.: Genetic Algorithms for least-cost design of water distribution networks. Journal of water resource planning and management, ASCE, 123, 2, 66–77 (1997).
  • 69. Sėrodes J.B., Rodriguez M.J.: Predicting residual chlorine evolution in storage tanks within distribution systems: Application of a neural network approach. Journal of Water Supply Research and Technology-AQUA, 45, 2, 57–66 (1996).
  • 70. Shanshan W., Ying H., Cheng L.: Research on Water Supply Network Optimization Using Advanced GA. Second International Conference on Information and Computing Science, icic, 1, 243–246 (2009).
  • 71. Shayya W.H., Sablani S.S.: An artificial neural network for non-iterative calculation of the friction factor in pipeline flow. Computers and Electronics in Agriculture, 21, 3, 219–228 (1998).
  • 72. Shirzad A., Tabesh M., Farmani R.: A comparison between performance of support vector regression and artificial neural network in prediction of pipe burst rate in water distribution networks. KSCE Journal of Civil Engineering, 18, 4, 941–948 (2013).
  • 73. Simpson A. R., Goldberg D. E.: Pipeline optimization via genetic algorithms: From theory to practice. Proceedings 2nd International Conference on Water Pipeline Systems, Mechanical Engineering Publications, Ltd., London, 309–320 (1994).
  • 74. Skipworth P.J., Saul A.J., Machell J.: Predicting water quality in distribution systems using artificial neural networks. Proceedings of the Institution of Civil Engineers-Water Maritime and Energy, 136, 1, 1–8 (1999).
  • 75. Słonimski T., Duzinkiewicz K.: Analiza możliwości zastosowania sztucznych sieci neuronowych do prognozowania zapotrzebowania na wodę w miejskich sieciach wodociągowych. Materiały III Konferencji Naukowo-Technicznej „Technologia i automatyzacja systemów wodociągowych i kanalizacyjnych TiASWIK’99”, Politechnika Gdańska, 235–242, Gdańsk -Stawiska 1999.
  • 76. Sroczan E.M., Urbaniak A.: Komputerowy system trenowania operatorów stacji uzdatniania wody i oczyszczania ścieków bazujący na sztucznej inteligencji. Materiały V Międzynarodowej Konferencji Zaopatrzenie w Wodę Miast i Wsi, PZiTS, 1003–1014, Poznań-Gdańsk 2002.
  • 77. Sroczan E.M., Urbaniak A.: Wykorzystanie metod sztucznej inteligencji w monitorowaniu, sterowaniu i eksploatacji systemów zaopatrzenia w wodę i ochrony wód. Materiały VI Międzynarodowej Konferencji „Zaopatrzenie w Wodę Miast i Wsi”, PZiTS Oddział Wielkopolski, 695–704, Poznań 2004.
  • 78. Świercz M.: Using neural networks to simplify mathematical models of water distribution networks. A case study. Proceedings of the First International Symposium on Mathematical Models in Automation and Robotics, Wydawnictwo Uczelniane Politechniki Szczecińskiej, 72–77 (1994).
  • 79. Han T.H., Nahm E.S., Woo K.B., Kim C.J., Ryu J.W.: Optimization of coagulant dosing process in water purification system. Proceedings of the 36th SICE Annual Conference SICE’97, 1105–1109 (1997).
  • 80. Valentin N., Denoeux T., Fotoohi F.: An hybrid neural network based system for optimization of coagulant dosing in a water treatment plant. Proceedings of the IJCNN’99 International Joint Conference on NeuralNetworks, 5, 3380–3385 (1999).
  • 81. Van den Boogaard H.F., Kruisbrink A.C.H.: Hybrid modeling by integrating neural networks and numerical models hydraulic engineering. Proceedings of the Second International Conference on Hydroinformatics, 2,471–477 (1996).
  • 82. Wyczółkowski R.: System monitorowania i wykrywania awarii sieci wodociągowych. [w:] Korbicz J., Patan K., Kowal M., Diagnostyka Procesów i Systemów, Tom.1, Akademicka Oficyna Wydawnicza EXIT, 307–314, Warszawa 2007.
  • 83. Wysogląd B.: Zastosowanie klasyfikatora neuronowego do identyfikacji niesprawności sieci wodociągowej. [w:] Korbicz J., Patan K., Kowal M., Diagnostyka Procesów i Systemów, Tom.1, Akad. Oficyna Wydawnicza EXIT, 315–321, Warszawa 2007.
  • 84. Xu C., Bouchart F., Goulter I.C.: Neural networks for hydraulic analysis of water distribution systems. Proceedings of the Innovation in Computer Methods for Civil and Structural Engineering, Civl-Comp Press, 129–136, Cambridge 1997.
  • 85. Yang K., Zhai J.: Particle Swarm Optimization Algorithms for Optimal Scheduling of Water Supply Systems. Second International Symposium on Computational Intelligence and Design ISCID '09, 2, 509 – 512 (2009).
  • 86. Zecchin A., Maier H., Simpson A., Leonard M., Nixon J.: Ant Colony Optimization Applied to Water Distribution System Design: Comparative Study of Five Algorithms. Water Resources Planning and Management, ASCE, 133, 1, 87–92 (2007).
  • 87. Zecchin A. C., Maier H.R., Simpson A.R., Leonard M., Roberts A.J., Berrisford M.J.: Application of two ant colony optimization algorithms to water distribution system optimisation. Mathematical and Computer Modelling, 44, 451–468 (2006).
  • 88. Zhang H., Luo D.: Application of an expert system using neural network to control the coagulant dosing in water treatment plant. Journal of Control Theory and Applications, 2, 89–92 (2004).
  • 89. Zhang Q.J., Shariff R., Smith D.W., Cudrak A., Stanley S.J.: Artificialintelligence Real-time process control system for the DAF process. Materiały VI Międzynarodowej Konferencji „Zaopatrzenie w Wodę Miast i Wsi”, PZiTS Oddział Wielkopolski, 223–242, Poznań 2004.
  • 90. Zhu J.Y. Gong, Zheng H.: Application of Genetic Algorithm to Water Distribution System Design Optimization. Geomatics and Information Science of Wuhan University, 28, 3, 363–367 (2003).
  • 91. Zhu X., Simpson A.R.: An Expert System for Turbidity Control Advice in Water Treatment Plant Operations. Department of Civil Engineering, The University of Adelaide 1991.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2e290e21-00a5-4211-bc6c-9b398f419b2f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.