PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Influence of Electrical Current Density and Type of the External Source of Carbon on Nitrogen and Phosphorus Efficiency Removal in the Sequencing Batch Biofilm Reactor

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This work presents the results of a study on the effect of electrical current density (53, 105, 158 and 210 mA/m2), type of the external source of carbon (citric acid, potassium bicarbonate), and C/NNO3 ratio (0.5, 1.0 and 1.5) on the effectiveness of nitrogen and phosphorus removal from synthetic wastewater with physicochemical parameters typical of municipal sewage subjected to bio-treatment in the highly efficient system for organic compounds removal ensuring efficient course of the nitrification process. The denitrification efficiency was found to depend on the type and dose of carbon and on the electrical current density. Higher values of this parameter were determined in the reactor with citric acid than in one with potassium bicarbonate used as carbon sources. Total phosphorus was removed in the processes of electrocoagulation and biomass growth. Higher efficiency of dephosphatation was achieved in the reactor with electrical current passage than in the reactor without it. The type of carbon source had little effect on the dephosphatation efficiency. The use of electrical current density of 210 mA/m2 and citric acid as a carbon source with C/N=1.5 allowed achieving 87.61(±1.6)% efficiency of denitrification and 97.69(±2.1)% efficiency of dephosphatation.
Rocznik
Strony
172--179
Opis fizyczny
Bibliogr. 26 poz., rys.
Twórcy
  • University of Warmia and Mazury in Olsztyn, Faculty of Environmental Sciences, Department of Environment Engineering, Warszawska 117a, 10-719 Olsztyn, Poand
  • University of Warmia and Mazury in Olsztyn, Faculty of Environmental Sciences, Department of Environment Engineering, Warszawska 117a, 10-719 Olsztyn, Poand
  • University of Warmia and Mazury in Olsztyn, Faculty of Environmental Sciences, Department of Environment Engineering, Warszawska 117a, 10-719 Olsztyn, Poand
Bibliografia
  • 1. Behbahani M., Alavi Moghaddam M. R., Arami M. 2011. A comparison between aluminum and iron electrodes on removal of phosphate from aqueous solutions by electrocoagulation process. Int. J. Environ. Res., 5, 403–412.
  • 2. Carrera J., Vicent T., Lafuente J. 2004. Effect of influent COD/N ratio on biological nitrogen removal (BNR) from high-strength ammonium industrial wastewater. Process Biochem., 39, 2035–2041.
  • 3. Feng H., Huang B., Zou Y., Li N., Wang M., Yin J., Cong Y., Shen D. 2013. The effect of carbon sources on nitrogen removal performance in bioelectrochemical systems. Bioresource Technol., 128, 565–570.
  • 4. Flora J.R.V., Suidan M.T., Islam S., Biswas P., Sakakibara Y. 1994. Numerical modeling of a biofilm-electrode reactor used for enhanced denitrification. Water Sci. Technol., 29, 517 – 524.
  • 5. Ghafari S., Hasan M., Aroua M.K. 2008. Bio–electrochemical removal of nitrate from water and wastewater – a review. Bioresour. Technol., 99, 3965–3974.
  • 6. Ghafari S., Hasan M., Aroua M.K. 2009. Effect of carbon dioxide and bicarbonate as inorganic carbon sources on growth and adaptation of autohydrogenotrophic denitrifying bacteria. J. Hazard. Mater., 162, 1507–1513.
  • 7. Hao R.X., Li S.M., Li J.B., Meng C.C. 2013. Denitrification of simulated municipal wastewater treatment plant effluent using a three-dimensional biofilm-electrode reactor: operating performance and bacterial community. Bioresour. Technol., 143, 178–186.
  • 8. Hiscock K.M., Lloyd J.W., Lerner D.N. 1991. Review of natural and artificial denitrification of groundwater. Water Res., 25, 1099–1111.
  • 9. Islam S., Suidan M.T. 1998. Electrolytic denitrification: long term performance and effect of current intensity. Water Res., 32, 528–536
  • 10. İrdemez Ş., Yildiz Y. Ş., Tosunoğlu V. 2006. Optimization of phosphate removal from wastewater by electrocoagulation with aluminum plate electrodes. Sep. Purif. Technol., 52(2), 394–401.
  • 11. Karanasios K.A., Vasiliadou I.A., Pavlou S., Vayenas D.V. 2010. Hydrogenotrophic denitrification of potable water: a review. J. Hazard. Mater., 180(1–3), 20–37.
  • 12. Kłodowska I., Rodziewicz J., Janczukowicz W. 2014. Removal of nitrogen compounds in the process of autotrophic denitrification in a Sequencing Batch Biofilm Reactor (SBBR). Polish J. Nat. Sci., 29 (4), 359–369.
  • 13. Kłodowska I., Rodziewicz J., Janczukowicz W., Cydzik-Kwiatkowska A., Parszuto K. 2016. Effect of citric acid on the efficiency of the removal of nitrogen and phosphorus compounds during simultaneous heterotrophic-autotrophic denitrification (HAD) and electrocoagulation. Ecol. Eng., 95, 30–35.
  • 14. Kłodowska I., Rodziewicz J., Janczukowicz W., Filipkowska U. 2013. Effect of electrochemical process on the outflow from the reactor with immobilized biofilm (in Polish). Annual Set The Environment Protection., 15, 1952–1964
  • 15. Kuokkanen V., Kuokkanen T., Rämö J., Lassi U., Roininen J. 2015. Removal of phosphate from wastewaters for further utilization using electrocoagulation with hybrid electrodes – Techno-economic studies. J. Water Process Eng., 8, 50–57.
  • 16. Lacasa E., Cañizares P., Sáez C., Fernandez F.J. Rodrigo M.A. 2011. Electrochemical phosphates removal using iron and aluminium electrodes. Chem. Eng. J., 172, 137–143.
  • 17. Lee S., Maken S., Jang J.-H., Park K., Park J.-W. 2006. Development of physicochemical nitrogen removal process for high strength industrial wastewater. Water Res. 40, 975–980.
  • 18. Lee D.J., Pan X., Wang A., Ho K.L. 2013. Facul tative autotrophic in denitrifying sulfide removal granules. Bioresour. Technol., 132, 356–360.
  • 19. Li M., Feng C.P., Zhang Z.N., Lei X.H., Chen R.Z., Yang Y.N., Sugiura N. 2009. Simultaneous reduction of nitrate and oxidation by-products using electrochemical method. J. Hazard. Mater., 171, 724–730.
  • 20. Shalaby A., Nassef E., Mubark A., Hussein M. 2014. Phosphate removal from wastewater by electrocoagulation using aluminium electrodes. Am. J. Environ. Eng. Sci., 1(5), 90 – 98.
  • 21. Tong S., Zhang B., Feng C., Zhao Y., Chen N., Hao C., Pu J., Zhao L. 2013. Characteristics of heterotrophic/biofilm-electrode autotrophic denitrification for nitrate removal from groundwater. Bioresour. Technol., 148, 121–127.
  • 22. Zaroual Z., Azzi M., Saib N., Chainet E. 2006. Contribution to the study of electrocoagulation mechanism in basic textile effluent. J. Hazard. Mater., 131, 73–78.
  • 23. Zhang J.M., Feng C.P., Hong S.Q., Hao H.L., Yang Y.N. 2012. Behavior of solid carbon sources for biological denitrification in groundwater remediation. Water Sci. Technol., 65(9), 1696–1704.
  • 24. Zhao Y., Feng C., Wang Q., Yang Y., Zhang Z., Sugiura N. 2011. Nitrate removal from groundwater by cooperating heterotrophic with autotrophic denitrification in a biofilm-electrode reactor. J. Hazard. Mater., 192(3), 1033–1039.
  • 25. Zhu S., Chen S. 2002. The impact of temperature on nitrification rate in fixed film biofilters. Aquacult. Eng., 26, 221–237.
  • 26. Zhao Y.X., Zhang B.G., Feng C.P., Huang F.Y., Zhang P., Zhang Z.Y., Yang Y.N., Sugiura N. 2012. Behavior of autotrophic denitrification and heterotrophic denitrification in an intensified biofilm-electrode reactor for nitrate contaminated drinking water treatment. Bioresour. Technol., 107, 159–165.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2e287067-26a9-4aca-93ba-19257f50e665
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.