PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thermal conductivity of the epoxy resin filled by low melting point alloy

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The aim of the work was to determine the effectiveness of the modification of epoxy resin’s thermal conductivity by Wood’s alloy particles addition. Design/methodology/approach: The manufacturing method of thermosetting polymer matrix composite materials reinforced with the Wood’s alloy particles was searched. Firstly, the mixing conditions were differentiated to obtain good dispersion of the reinforcement in polymeric matrix. The thermal conductivity coefficient of composites has been investigated by using of the quasi-static test. Findings: The suggested method of thermal conductivity measurement allows to avoid the procedure of solving complicated equations. The developed measuring device enables the measurements of thermal conductivity of polymer composites in a form of a beam of 4x20X120 mm dimension. The results of the thermal conductivity tests and their analysis are presented. Research limitations/implications: The presented research was limited to composites in the form of small samples. The developed technology of this type of composites’ preparation is limited to small volumes because of the sedimentation process. The second limitation results from the necessity of matching the shape of the test specimen to the size of the cooler and heater on the device for measuring thermal conductivity. Practical implications: Materials with low melting point alloy content show many possible applications. First of all, these are the materials of higher thermal conductivity and electrical conductivity than the standard polymeric materials. Originality/value: The preparation method of thermosetting polymer matrix composite materials reinforced with the Wood’s alloy particles fabricating method was developed. Composites with good thermal properties were obtained. The obtained results confirm the utility of the applied investigation methods in the thermal analysis of polymer composites.
Rocznik
Strony
22--29
Opis fizyczny
Bibliogr. 40 poz.
Twórcy
  • Department for Processing of Metals and Polymers, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
autor
  • Department for Processing of Metals and Polymers, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
Bibliografia
  • [1] W. Grellmann, S. Seidler, Polymer testing, Hanser Verlag, 2007.
  • [2] E.H. Chan, Development and characterization of thermally conductive polymeric composites for electronic packaging applications, A thesis submitted in conformity with the requirements for the degree of Master of Applied Science and Engineering Graduate Department of Mechanical AND Industrial Engineering, University of Toronto, 2011.
  • [3] A.A. Hashim (Ed.), Smart nanoparticles technology, Intechopen, Croatia, 2012.
  • [4] T.A. Osswald. G. Menges, Materials science of polymers for engineers, Carl Hansen Verlag, Munich, 2003.
  • [5] L. Sun, Phonon Transport in confined structures and at interfaces, ProQuest, 2008.
  • [6] Z. Han, A. Fina, Thermal conductivity of carbon nanotubes and their polymer nanocomposites, Progress in Polymer Science 36 (2011) 914-944.
  • [7] G. Hartwig, Polymer properties at room and cryogenic temperatures, Springer, 1994.
  • [8] A. Pusz, A. Januszka, S. Lesz, R. Nowosielski, Thermal conductivity measuring station for metallic glasses, Archives of Materials Science and Engineering 47/2 (2011) 95-102.
  • [9] H. Mehling, L.F. Cabeza, Heat and cold storage with PCM: an up to date introduction into basics and applications, Springer, 2008.
  • [10] B. Chowdhury, S.C. Mojumdar, Aspects of thermal conductivity relative to heat flow, Journal of Thermal Analysis and Calorimetry 81 (2005) 179-182.
  • [11] C.J.M. Lasance, Thermal conductivity of filled plastics, Electronics Cooling Magazine, 15/2 (2009) 1887–1897.
  • [12] S.B. Rajpal, K. Pradeep, R.S. Sharma, K.Sajjan, Effective thermal conductivity of polymer composites using local fractal techniques, International Journal of Innovative Technology and Exploring Engineering 2/3 (2013) 95-100.
  • [13] L.M. Zhang, G.C. Dai, Effect of interfacial treatment on the thermal properties of thermal conductive plastics, eXPRESS Polymer Letters 1/9 (2007) 608-615.
  • [14] Ye.P. Mamunya, V.V. Davydenko, P. Pissis, E.V. Lebedev, Electrical and thermal conductivity of polymers filled with metal powders, European Polymer Journal 38 (2002) 1887-1897.
  • [15] W. Głuchowski, Z.M. Rdzawski, Thermal stability of properties in silver - rare earth metals alloys, Journal of Achievements in Materials and Manufacturing Engineering 28/2 (2008) 143-149.
  • [16] I. Tavman, Y. Aydogdu, M. Kök, A. Turgut, A. Ezan, Measurement of heat capacity and thermal conductivity of HDPE/expanded graphite nanocomposites by differential scanning calorimetry, Archives of Materials Science and Engineering 50/1 (2011) 56-60.
  • [17] I. Tavman, A. Turgut, M. Chirtoc, H.P. Schuchmann, S. Tavman, Experimental investigation of viscosity and thermal conductivity of suspensions containing nanosized ceramic particles, Archives of Materials Science and Engineering 34/2 (2008) 99-104.
  • [18] www.materialsviews.com/how-to-improve-the-thermal-behav-iour -of-polymer-nanocomposites.
  • [19] T.A. Osswald, J.P. Hernández-Ortiz, Polymer processing: modeling and simulation, Carl Hansen Verlag, Munich, 2006.
  • [20] www.matweb.com.
  • [21] http://mobile.indium.com/low-temperature-alloys.
  • [22] http://alasir.com/reference/solder_alloys.
  • [23] ASTM B774-00, Standard Specification for Low Melting Point Alloys.
  • [24] PN-91/H-87203, Low Melting Point Alloys (in Polish).
  • [25] F. Cardarelli, Materials Handbook, A concise desktop reference, Springer, 2008.
  • [26] J. Stabik, Ł?. Wierzbicki, Epoxy resins and low melting point alloy composites, Archives of Materials Science and Engineering 48/1 (2011) 5-11.
  • [27] Ł. Wierzbicki, J. Stabik, Epoxy composites filled with Wood's alloy, Proceedings of the 17th International Scientific Conference on “Contemporary Achievements in Mechanics, Manufacturing and Materials Science” CAM3S'2011, Gliwice-Wrocław, 81 (in Polish).
  • [28] Kirk-Othmer R. E Encyclopedia of chemical technology, Bismuth and bismuth alloys, Wiley John & Sons, 2007.
  • [29] http://www.innovator.com.pl.
  • [30] H.H. Manko, Solders and soldering: materials, design, production, and analysis for reliable bonding, McGraw-Hill Professional, 2001.
  • [31] X.W. Zhang, Y. Pan, Q. Zheng, X.S. Yi, Polystyrene/Sn-Pb Alloy Blends, II, Effect of alloy particle surface treatment on dynamic rheological behaviour, Journal of Applied Polymer Science 86 (2002) 3173-3179.
  • [32] X.W. Zhang, Y. Pan, L. Shen, Q. Zheng, X.S. Yi, A novel low-melting-point alloy-loaded polymer composite. I. Effect of processing temperature on the electrical properties and morphology Journal of Applied Polymer Science 77 (2000) 1044-1050.
  • [33] E. Włodarczyk, A. Gubań?ski, R. Steller, Some properties of thermoplastic polymers with low melting metal alloys blends, IPEiE Scientific Papers of Wrocław University of Technology 44/18 (2006) 106-110 (in Polish).
  • [34] S. Bian, S.H. Jayaram, E.A. Cherney, A comparison of thermal characteristics between conventional and electrospun epoxy composites, Proceedings of the Joint Electrostatics Conference, 2012.
  • [35] M.J. Hodgin, R.H. Estes, Advanced boron nitride epoxy formulations excel in thermal management applications, NEPCON WEST Conference, Anaheim, 1999, 359-366.
  • [36] G. Rabilloud, High-performance polymers, Conductive Adhesives, Ophrys, 1997.
  • [37] J. Stabik, A. Dybowska, M. Chomiak, Polymer composites filled with powders as polymer graded materials, Journal of Achievements in Materials and Manufacturing Engineering 43/1 (2010) 153-161.
  • [38] A. Pusz, Z. Trojnacki, The modelling of thermal conductivity measurements using “FEMM” application, Archives of Materials Science and Engineering 53/1 (2012) 53-60.
  • [39] R. Nowosielski, A. Januszka, R. Babilas, Thermal properties of Fe-based bulk metallic glasses, Journal of Achievements in Materials and Manufacturing Engineering 55/2 (2012) 349-354.
  • [40] A. Pusz, Z. Chrobok, Project of thermal conductivity measuring station for plastic composites, Proceedings of the 11th International Scientific and Technical Conference on “Engineering Polymers and Composites”, Olsztyn, 2010, 285-291 (in Polish).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2e261896-4350-4731-9e49-47b451629acd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.