PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Characteristic velocity of strong wind for wind engineering purposes

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Prędkość charakterystyczna silnego wiatru do celów inżynierii wiatrowej
Języki publikacji
EN
Abstrakty
EN
Eurocode standard recommends using fundamental basic wind velocity (characteristic velocity) as the design value in civil engineering. There are different approaches to estimate this value depending on the climate features of the given area and the quality of environmental data. The estimation of the characteristic value requires statistical analysis of historical data regarding wind velocities measured throughout the country at meteorological stations. The results of the analysis are probability density distributions of this random variable for each meteorological station. On this basis, values of characteristic wind velocity with a mean return period of 50 years are determined. The zones with uniform velocities are delineated on the map of the country. In the case of Poland the last evaluation of wind zones took place over 15 years ago. Higher quality of measurement data on the one hand, and the introduction of the second generation of Eurocode standards on the other hand, create a need to check and update these zones. This work presents theoretical basis for the estimation of characteristic values of random variables in the context of wind velocity, comprehensively reviews practical methods used for this purpose and summarizes current situation in Poland, finally discusses the issues related to the heterogeneity of wind data, illustrating them with an example.
PL
Eurokod zaleca stosowanie podstawowej bazowej prędkości wiatru (prędkości charakterystycznej) jako wartości projektowej w inżynierii lądowej. Istnieją różne metody szacowania tej wartości, zależne od cech klimatycznych danego obszaru oraz jakości rejestrowanych danych środowiskowych. Oszacowanie wartości charakterystycznej wymaga analizy statystycznej danych historycznych na temat prędkości wiatru mierzonej na stacjach meteorologicznych na terenie całego kraju. Wynikiem analizy jest rozkład gęstości prawdopodobieństwa i w konsekwencji wartość charakterystyczna prędkości wiatru w danej lokalizacji. W normach projektowych, przeważnie jest to prędkość o tzw. okresie powrotu wynoszącym 50 lat. Końcowym efektem jest wyznaczenie na mapie kraju stref o jednakowych prędkościach wiatru. W przypadku Polski ostatnia aktualizacja stref wiatrowych miała miejsce ponad 15 lat temu. Znacznie dłuższe okresy pomiarowe i dobra jakość danych rejestrowanych na stacjach w ostatnich latach oraz wprowadzenie w niedalekiej przyszłości drugiej generacji norm Eurokod stwarza potrzebę sprawdzenia tych stref i ewentualnej ich korekty. W pracy przedstawiono podstawy teoretyczne estymacji wartości charakterystycznych zmiennych losowych w kontekście prędkości wiatru, dokonano kompleksowego przeglądu praktycznych metod stosowanych w tym celu oraz podsumowano obecną sytuację w Polsce. Omówiono również zagadnienia związane z niejednorodności danych wiatrowych rejestrowanych na stacjach meteorologicznych, ilustrując je przykładem.
Rocznik
Strony
217--237
Opis fizyczny
Bibliogr. 68 poz., il., tab.
Twórcy
  • Lublin University of Technology, Lublin, Poland
  • Poznan University of Technology, Poznań, Poland
autor
  • Firelab, Pretoria, South Africa
  • Building Research Institute, Warszawa, Poland
  • Building Research Institute, Warszawa, Poland
Bibliografia
  • [1] PN-EN 1991-1-4:2008 Eurocode 1: Actions on structures - Part 1-4: General actions - Wind actions. Brussels, Belgium: CEN, 2008.
  • [2] E. Castillo, A.S. Hadi, N. Balakrishnan, and J.M. Sarabia, Extreme value and related models with applications in engineering and science. New Jersey: John Wiley and Sons, 2005.
  • [3] E.J. Gumbel, Statistics of extremes. New York: Columbia University Press, 1958.
  • [4] S. Coles, An introduction to statistical modeling of extreme values. London: Springer-Verlag, 2004.
  • [5] L. de Haan and A. Ferreira, Extreme value theory. An Introduction. Springer, 2006.
  • [6] R.D. Reiss and M. Thomas, Statistical analysis of extreme values: With applications to insurance, finance, hydrology and other fields, 3rd ed. Birkhäuser Verlag, 2007.
  • [7] A.F. Jeckinson, “The frequency distribution of the annual maximum (or minimum) values of meteorological elements”, Quarterly Journal of the Royal Meteorological Society, vol. 81, pp. 158-171, 1955, doi: 10.1002/qj.49708134804.
  • [8] J.P. Palutikof, B.B. Brabson, D.H. Lister, and S.T. Adock, “A review of methods to calculate extreme wind speeds”, Meteorological Applications, vol. 6, pp. 119-132, 1999, doi: 10.1017/S1350482799001103.
  • [9] A. Torrielli, M.P. Repetto, and G. Solari, “Extreme wind speeds from long-term synthetic records”, Journal of Wind Engineering and Industrial Aerodynamics, vol. 115, pp. 22-38, 2013, doi: 10.1016/j.jweia.2012.12.008.
  • [10] R. Chiodi and F. Ricciardelli, “Three issues concerning the statistics of mean and extreme wind speeds”, Journal of Wind Engineering and Industrial Aerodynamics, vol. 125, pp. 156-167, 2014, doi: 10.1016/j.jweia.2013.12.009.
  • [11] R.I. Harris, “Gumbel re-visited - A new look at extreme value statistics applied to wind speeds”, Journal of Wind Engineering and Industrial Aerodynamics, vol. 59, no. 1, pp. 1-22, 1996, doi: 10.1016/0167-6105(95)00029-1.
  • [12] J. Lieblein, “Efficient methods of Extreme-Value methodology. Raport NBSIR 74-602”, USA: National Bureau of Standards, 1974.
  • [13] Y. An and M.D. Pandey, “A comparison of methods of extreme wind speed estimation”, Journal of Wind Engineering and Industrial Aerodynamics, vol. 93, no. 7, pp. 535-545, 2005, doi: 10.1016/j.jweia.2005.05.003.
  • [14] Y. An and M.D. Pandey, “The r largest order statistics model for extreme wind speed estimation”, Journal of Wind Engineering and Industrial Aerodynamics, vol. 95, no. 3, pp. 165-182, 2007, doi: 10.1016/j.jweia.2006.05.008.
  • [15] EN 1991-1-4 SC1.T3; Second Draft EN 1991-1-4 ‘Wind Actions’ April 2019; CLEAN, 2020.
  • [16] N.J. Cook and R.I. Harris, “Exact and general FT1 penultimate distributions of extreme wind speeds drawn from tail-equivalent Weibull parents”, Structural Safety, vol. 26, no. 4, pp. 391-420, 2004, doi: 10.1016/j.strusafe.2004.01.002.
  • [17] N.J. Cook and R.I. Harris, “Postscript to ‘Exact and general FT1 penultimate distributions of extreme wind speeds drawn from tail-equivalent Weibull parents”, Structural Safety, vol. 30, no. 1, pp. 1-10, 2008, doi: 10.1016/j.strusafe.2006.04.001.
  • [18] L. Gomes and B.J. Vickery, “On the prediction of extreme wind speeds from the parent distribution”, Journal of Wind Engineering and Industrial Aerodynamics, vol. 2, no. 1, pp. 21-36, 1977, doi: 10.1016/0167-6105(77)90003-4.
  • [19] ESDU 87034 World-wide extreme wind speeds. Part 1: Origins and methods of analysis. London: ESDU International, 1987.
  • [20] I. Weissman, “Estimation of parameters and large quantiles based on the k largest observations”, Journal of the American Statistical Association, vol. 73, no. 364, pp. 812-815, 1978, doi: 10.1080/01621459.1978.10480104.
  • [21] J. Pickands, “Statistical inference using order statistics”, Annals of Statistics, vol. 3, no. 1, pp. 119-131, 1975, doi: 10.1214/aos/1176343003.
  • [22] J. Abild, E. Andersen, and D. Rosbjerg, “The climate of extreme winds at the Great Belt”, Journal of Wind Engineering and Industrial Aerodynamics, vol. 41, no. 1-3, pp. 521-532, 1992, doi: 10.1016/0167-6105(92)90458-M.
  • [23] D. Walshaw, “Getting the most from your extreme wind data: a step by step guide”, Journal of Research of the National Institute of Standards and Technology, vol. 99, no. 4, pp. 399-411, 1994.
  • [24] E. Simiu and N.A. Heckert, Extreme wind distribution tails: a ‘Peaks Over Threshold’ approach. NIST Building Science Series 174, 1995.
  • [25] J.D. Holmes and W.W. Moriarty, “Application of the generalized Pareto distribution to extreme value analysis in wind engineering”, Journal of Wind Engineering and Industrial Aerodynamics, vol. 83, no. 1-3, pp. 1-10, 1999, doi: 10.1016/S0167-6105(99)00056-2.
  • [26] N. J. Cook, “Towards better estimation of wind speeds”, Journal of Wind Engineering and Industrial Aerodynamics, vol. 9, no. 3, pp. 295-323, 1982, doi: 10.1016/0167-6105(82)90021-6.
  • [27] R.I. Harris, “Improvements to the ‘Method of Independent Storms”, Journal of Wind Engineering and Industrial Aerodynamics, vol. 80, no. 1-2, pp. 1-30, 1999, doi: 10.1016/S0167-6105(98)00123-8.
  • [28] R.I. Harris, “XIMIS, a penultimate extreme value method suitable for all types of wind climate”, Journal of Wind Engineering and Industrial Aerodynamics, vol. 97, no. 5-6, pp. 271-286, 2009, doi: 10.1016/j.jweia.2009.06.011.
  • [29] J.R.M. Hosking, J.R. Wallis, and E.F. Wood, “Estimation of the Generalized Extreme Value distribution by the method of Probability-Weighted Moments”, Technometrics, vol. 27, pp. 251-261, 1985, doi: 10.1080/00401706.1985.10488049.
  • [30] T.S. Gubareva and B.I. Gartsman, “Estimating distribution parameters of extreme hydrometeorological characteristics by L-moments method”, Water Resources, vol. 37, no. 4, pp. 437-445, 2010, doi: 10.1134/S009780 7810040020.
  • [31] J.R. Stedinger, R.M. Vogel, and E. Foufoula-Georgiou, “Frequency analysis of extreme events”, in Handbook of Hydrology. New York: McGraw Hill, 1993, p. 68.
  • [32] E. Simiu and D.H. Yeo, Wind effects on structures. Modern structural design for wind. John Wiley & Sons Ltd., 2019.
  • [33] P. Breuer, T. Chmielewski, and P. Górski, “Dynamic response of the Stuttgart TV tower measured by classical instruments and GPS technology”, Archives of Civil Engineering, vol. 67, no. 1, pp. 7-38, 2021, doi: 10.24425/ace.2021.136459.
  • [34] X. Yang, C. Milliren, M. Kistner, C. Hogg, J. Marr, L. Shen, and F. Sotiropoulos, “High-fidelity simulations and field measurements for characterizing wind fields in a utility-scale wind farm”, Applied Energy, vol. 281, art. no. 116115, 2021, doi: 10.1016/j.apenergy.2020.116115.
  • [35] S. Laima, H. Feng, H. Li, Y. Jin, F. Han, and W. Xu, “A Buffeting-Net for buffeting response prediction of full-scale bridges”, Engineering Structures, vol. 275, art. no. 115289, 2023, doi: 10.1016/j.engstruct.2022.115289.
  • [36] Y.W. Wang and Y.Q. Ni, “Full-scale monitoring of wind effects on a supertall structure during six tropical cyclones”, Journal of Building Engineering, vol. 45, art. no. 103507, 2022, doi: 10.1016/j.jobe.2021.103507.
  • [37] B. Li, C. Li, Q. Yang, Y. Tian, and X. Zhang, “Full-scale wind speed spectra of 5 year time series in urban boundary layer observed on a 325 m meteorological tower”, Journal of Wind Engineering and Industrial Aerodynamics, vol. 218, art. no. 104791, 2021, doi: 10.1016/j.jweia.2021.104791.
  • [38] J.A. Żurański, Influence of climatic and terrain conditions on wind loads on building structures. Warsaw: Scientific papers of the Building Research Institute, 2005 (in Polish).
  • [39] M. Kasperski, “A new wind zone map of Germany”, Journal of Wind Engineering and Industrial Aerodynamics, vol. 90, no. 11, pp. 1271-1287, 2002, doi: 10.1016/S0167-6105(02)00257-X.
  • [40] C. Sacré, J.M. Moisselin, M. Sabre, J.P. Flori, and B. Dubuisson, “A new statistical approach to extreme wind speeds in France”, Journal of Wind Engineering and Industrial Aerodynamics, vol. 95, no. 9-11, pp. 1415-1423, 2007, doi: 10.1016/j.jweia.2007.02.013.
  • [41] H.P. Hong, T.G. Mara, R. Morris, S.H. Li, and W. Ye, “Basis for recommending an update of wind velocity pressures in Canadian design codes”, Canadian Journal of Civil Engineering, vol. 41, no. 3, pp. 206-221, 2014, doi: 10.1139/cjce-2013-0287.
  • [42] F.T. Lombardo and A.S. Zickar, “Characteristics of measured extreme thunderstorm near-surface wind gusts in the United States”, Journal of Wind Engineering and Industrial Aerodynamics, vol. 193, art. no. 103961, 2019, doi: 10.1016/j.jweia.2019.103961.
  • [43] O. Karpa and A. Naess, “Extreme value statistics of wind speed data by the ACER method”, Journal of Wind Engineering and Industrial Aerodynamics, vol. 112, pp. 1-10, 2013, doi: 10.1016/j.jweia.2012.10.001.
  • [44] P. Patlakas, G. Galanis, N. Barranger, and G. Kallos, “Extreme wind events in a complex maritime environment: Ways of quantification”, Journal of Wind Engineering and Industrial Aerodynamics, vol. 149, pp. 89-101, 2016, doi: 10.1016/j.jweia.2015.11.006.
  • [45] L. Pop, Z. Sokol, and D. Hanslian, “A new method for estimating maximum wind gust speed with a given return period and a high areal resolution”, Journal of Wind Engineering and Industrial Aerodynamics, vol. 158, pp. 51-60, 2016, doi: 10.1016/j.jweia.2016.09.005.
  • [46] M.B. Vallis, A.M. Loredo-Souza, V. Ferreira, and E. de L. Nascimento, “Classification and identification of synoptic and non-synoptic extreme wind events from surface observations in South America”, Journal of Wind Engineering and Industrial Aerodynamics, vol. 193, art. no. 103963, 2019, doi: 10.1016/j.jweia.2019.103963.
  • [47] L.O. Almeida, M.G. Lima, I.C.A. Esteves, G.S. Munhoz, and R.A. Medeiros-Junior, “Updating the Brazilian wind speed map for structural design”, Structural Engineering and Mechanics, vol. 79, no. 5, pp. 557-564, 2021, doi: 10.12989/sem.2021.79.5.557.
  • [48] A.C. Kruger, J.V. Retief, and A.M. Goliger, “Strong winds in South Africa: Part 1 Application of estimation methods”, Journal of the South African Institution of Civil Engineering, vol. 55, no. 2, pp. 29-45, 2013.
  • [49] A.C. Kruger, J.V. Retief, and A.M. Goliger, “Strong winds in South Africa: Part 2 mapping of updated statistics”, Journal of the South African Institution of Civil Engineering, vol. 55, no. 2, pp. 47-58, 2013.
  • [50] A.C. Kruger, J.V. Retief, and A.M. Goliger, “Development of an updated fundamental basic wind speed map for SANS 10160-3”, Journal of the South African Institution of Civil Engineering, vol. 59, no. 4, pp. 12-25, 2017, doi: 10.17159/2309-8775/2017/v59n4a2.
  • [51] F.P. Bakker, N. De Koker, and C. Viljoen, “Preconditioning wind speeds for standardised structural design”, Engineering Structures, vol. 238, art. no. 111856, 2021, doi: 10.1016/j.engstruct.2021.111856.
  • [52] S. Zhang, G. Solari, Q. Yang, and M.P. Repetto, “Extreme wind speed distribution in a mixed wind climate”, Journal of Wind Engineering and Industrial Aerodynamics, vol. 176, pp. 239-253, 2018, doi: 10.1016/j.jweia.2018.03.019.
  • [53] A.A. Safaei Pirooz, R.G.J. Flay, and R. Turner, “New Zealand design wind speeds, directional and lee-zone multipliers proposed for AS/NZS 1170.2:2021”, Journal of Wind Engineering and Industrial Aerodynamics, vol. 208, art. no. 104412, 2021, doi: 10.1016/j.jweia.2020.104412.
  • [54] P. Ceppi, P.M. Della-Marta, and C. Appenzeller, “Extreme Value Analysis of wind speed observations over Switzerland”, Arbeitsberichte der MeteoSchweiz, vol. 219, p. 48, 2008.
  • [55] I. Yu, J. Kim, and S. Jeong, “Development of probability wind speed map based on frequency analysis”, Spatial Information Research, vol. 24, no. 5, pp. 577-587, 2016, doi: 10.1007/s41324-016-0054-6.
  • [56] M.R. Abdillah, et al., “Extreme wind variability and wind map development in western Java, Indonesia”, International Journal of Disaster Risk Science, vol. 13, no. 3, pp. 465-480, 2022, doi: 10.1007/s13753-022-00420-7.
  • [57] A. Sarkar, S. Deep, D. Datta, A. Vijaywargiya, R. Roy, and V.S. Phanikanth, “Weibull and Generalized Extreme Value distributions for wind speed data analysis of some locations in India”, KSCE Journal of Civil Engineering, vol. 23, no. 8, pp. 3476-3492, 2019, doi: 10.1007/s12205-019-1538-4.
  • [58] J.A. Żurański and A. Sobolewski, “An analysis of snow and wind loads combinations based on meteorological data”, Archives of Civil Engineering, vol. 62, no. 4, pp. 205-230, 2017, doi: 10.1515/ace-2015-0117.
  • [59] J.D. Holmes, Wind loading of structures, 3rd ed. CRC Press, 2017.
  • [60] J.A. Żurański, M. Gaczek, and S. Fiszer, “Charakter i występowanie wiatrów katastrofalnych w Polsce / The nature and occurrence of catastrophic winds in Poland”, in Konferencja Naukowa KILiW PAN i KN PZITB Kielce - Krynica. 2009, pp. 697-704 (in Polish).
  • [61] T. Chmielewski, B. Kaleta, and H. Nowak, “Estimation of critical wind speed on the basis of roof blow-off”, Archives of Civil Engineering, vol. 66, no. 3, pp. 391-405, 2020, doi: 10.24425/ace.2020.134404.
  • [62] T. Chmielewski and H. Nowak, “Proposed classification for all types of wind storms in Poland”, Archives of Civil Engineering, vol. 66, no. 4, pp. 183-200, 2020, doi: 10.24425/ace.2020.135216.
  • [63] A. Goliger, J. Żurański, M. Giżejowski, M. Gaczek, J. Retief, A. Kruger, P. Dunaiski, S. Fiszer, and M. Ćwik, “Comparative study between Poland and South Africa wind climates, the related damage and implications of adopting the eurocode for wind action on buildings”, Archives of Civil Engineering, vol. 59, no. 1, pp. 51-95, 2013, doi: 10.2478/ace-2013-0003.
  • [64] PN-77/B-02011 Loads in static calculations. Wind loads. Warsaw, Poland: PKN, 1977 (in Polish).
  • [65] E.L. Deacon, “Wind gust speed: averaging time relationship”, Australian Meteorological Magazine, vol. 51, pp. 11-14, 1965.
  • [66] C.S. Durst, “Wind speeds over short periods of time”, The Meteorological Magazine, vol. 89, pp. 181-186, 1960.
  • [67] M. Gaczek, “Oddziaływanie wiatru na dachy budynków / Wind action on building roofs”, Materiały Budowlane, vol. 6, no. 562, pp. 6-9, 2019 (in Polish).
  • [68] ISO-4354:2009 Wind actions on structures. Geneva, Switzerland: ISO, 2009.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2e25f67c-83e6-4daa-bf90-b294ed36cb86
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.