[
.
.
LN J
-0
LN J
LN J
RN
.
.

I

PRACE IPI PAN ICS PAS REPORTS

Maciej Szreter

Bounded Abstract Planning in Planics

based on Graph Databases

Nr 1031

INSTYTUT PODSTAW INFORMATYKI POLSKIEJ AKADEMII NAUK
INSTITUTE OF COMPUTER SCIENCE POLISH ACADEMY OF SCIENCES
ul. Jana Kazimierza 5, 01-248 Warszawa http://www.ipipan.waw.pl

Maciej Szreter

Bounded Abstract Planning in Planics
based on Graph Databases

Nr 1031

Warsaw, December 2015

Prace zglosit Prof. dr hab. inz. Wojciech Penczek

Adres autora: Instytut Podstaw Informatyki PAN
ul. Jana Kazimierza 5
01-248 Warszawa
Polska

E-mail: mszreter@ipipan.waw.pl

Symbol klasyfikacji rzeczowej MSC 2000: 03D99, 68Q05

Na prawach rekopisu
Printed as manuscript

Naktad 80 egzemplarzy. Papier kserograficzny klasy III. Oddano do druku w grudniu
2015 r. Wydawnictwo IPI PAN. ISSN 0138-0648

Abstract

The paper describes an application of a graph database to the
abstract planning in the PlanicS composition system for web
services. Abstract planning is the first stage of the service com-
position process, and consists in matching types of the services
and objects processed by them, with some additional constraints.
The result is an abstract plan matching the user query. The
presented solution prunes the ontologies for the abstract plan-
ners, greatly improving efficiency and providing better scalabil-
ity. This is of particular importance in the domain of web service
composition, because usually systems are expected to produce
answers immediatly.

Keywords: automatic composition of web services, graph databases,
abstract planning

Streszczenie

Ograniczone abstrakcyjne planowanie w systemie
Planics wykorzystujace grafowe bazy danych

Praca opisuje zastosowanie grafowej bazy danych do fazy
planowania abstrakcyjnego w systemie automatycznej kom-
pozycji ustug sieciowych Planics. Planowanie abstrakcyjne jest
pierwszg faza procesu planowania ustug, i polega na dopasowa-
niu typoéw ustug i przetwarzanych przez nie obiektow, w celu
wygenerowania planu abstrakcyjnego spelniajacego zapytanie
skierowane do systemu przez uzytkownika. Rozwiazanie bardzo
istotnie zwieksza efektywnosé istniejacych metod planowania
opartych na testowaniu spelnialnosci formut logicznych lub
bazujacych na algorytmach genetycznych. Jest to szczegdlnie
wazne w dziedzinie planowania ustug sieciowych, gdzie od
systeméw oczekuje sie bardzo krétkich czaséw przetwarzania
zapytan. Metoda ogranicza przeszukiwang ontologie ze wzgledu
na zapytanie uzytkownika, znaczaco ulatwiajac znalezienie
rozwigzan.

Stowa kluczowe: automatyczna kompozycja ustug sieciowych,
grafowe bazy danych, planowanie abstrakcyjne

1 Introduction

Planics [16] is a framework for automated composition of web services.
Its distinguishing features are precise definition of the semantics, a strong
type system for service and object types kept in an ontology, and two-
stage composition. First (abstract) stage dealing with types, while second
(concrete) stage works with instances of services, called offers, and objects
processed by services (referred to as objects). The aim of Planics is to
integrate services designed in different formalisms, either defined as "black-
boxes’ or ascribed with semantic descriptions. Another feature is the ability
to deal with big numbers of services, partly enforced by the idea of abstract
planning and partly by the implementations of planners, inspired by model
checking and soft computing areas with handling huge state spaces as an
objective.

Abstract planners are tools performing the abstract planning stage. The
planners developed so far are based on Satisfiability-Modulo-Theorems (SMT)
solvers, and genetic algorithms. The former suffer from the combinatorial
explosion, especially for longer plans, and the latter are fast but in most
cases incomplete. This paper sets out to prove that a pre-planner based
on (graph) databases offers several advantages. The major profit is that it
usually prunes the ontology significantly. In contrast, all the existing solvers
encode whole ontologies and then use heuristics to restrict the search to the
relevant fragment. When modeling the problems as graphs, this fragment
is determined by a graph database. The abstract planning problem has the
structure well suited towards applying a database: the modifications of the
ontology are relatively rare, and big numbers of queries are expected to be
processed quickly.

Graph databases are a recent development among several approaches
to redefine traditional relational database model, referred to by a common
name of NoSQL [17]. These approaches use different data models as a
background. In the case of graph databases, data are represented as graphs,
and the database engine provides efficient representation, as well as traversal
and search methods, based on a specialized query languages. Neo4j [11] is
one of the most popular graph databases. A part of Neod4j is Cypherlanguage
for expressing queries, which in general correspond to reachability problems
for graphs, with several additional constraints.

The general idea of our approach is to model the relations of processing
objects by services as a graph. Then, the problem of reachability between
nodes modeling objects from the input and expected worlds of the user
query corresponds to potential context partial orders of resulting abstract
plans. A graph database finds a subgraph relevant for the user query from
the possibly huge graph representing the ontology. Finally, the search for
exact abstract plans is performed by an external abstract planner, and it
is in general easier because services and objects not relevant for the query

have been pruned. Using external solvers is motivated by the effectiveness
and simplicity of implementation. Implementing the whole planning process
in the graph database will be the part of the future work.

An additional advantage of the presented approach are nice visualiza-
tion capabilities provided by graph databases, allowing human operators to
easily look at the internal structure of an ontology. This may enable in-
teresting ways of interacting with users, performing analyses which services
and objects are the most intensively used etc.

The paper is structured as follows. First we report the related work.
Section 2 describes the Planics approach to abstract planning. Section 3
introduces graphs, and then delivers the main result. The planning problem
is modeled as a graph, and a graph database is applied to pruning the on-
tology according to the user query. Section 4 explains in detail the structure
of a selected benchmark. Section 5 provides experimental results comparing
the performance of the SMT-based abstract planner for full-size ontologies
and those pruned by the graph database search. Section 6 concludes the
paper and presents possible directions of the future work.

1.1 Related work

The presentation of the related work is centered around Planics, because
it is where the abstract planning is defined. To the best of our knowledge,
no other approach to the web service composition distinguishes abstract
planning as a separate stage.

The idea of abstract and concrete planing has been inherited by Planics
from Entish [2] language and associated composition system. A general
description of Planics can be found in [5]. The paper [15] describes how
the planners based on SMT and genetic algorithm can interact to exploit
advantages of every approach. [16] confirms that custom PlaniCs concrete
planning algorithms are indeed much more effective than available general
approaches which can be applied to this aim. [12] extends the basic planning
scheme into temporal planning, allowing for more expressible user queries,
referring to several worlds and relations between them. In [8] the authors
perform a static analysis determining which actions are certain not to pro-
duce any plan, and feed this information to an SMT solver, adding it to
the result formula as a set of constraints. The experiments show that some
improvement is gained at the stage of searching for solutions, and checking
that no more solution exist takes longer time. Our method is different by
performing all the abstract planning (without checking pre/post constraints)
by explicit graph algorithms, thus pruning the ontology. All the Planics ab-
stract planners (to the date based on SMT or genetic algorithms) can be
used for checking it

Concerning the other automatic approaches to web services composition,
[21] is a solution the closest to ours, as it defines the services in a similar way,

based on pre- and postconditions. It also models ontology using an object
concept. Compared to Planics, it is focused more on logical deductions
based on queries, and less on efficiency (has no two-phase planning).

There are several papers solving the web composition problem by mod-
eling it in the domain of graphs, with solutions corresponding to reach-
ability in graphs. In these papers, services are based on the IOPR (in-
put,output,precondition,result) paradigm, similarly to our approach. None
of the papers distinguishes between abstract and concrete planning in our
sense, and neither uses graph databases. To the best of our knowledge,
we could also find no experimental analysis showing that graph-based ap-
proaches can effectively deal with ontologies with significant numbers of
services and objects. In [7], information about inputs and outputs of ser-
vices are represented by interface automata. In dependency graphs, nodes
correspond to object types and edges to services processing them. There
is no experimental evaluation. [1] represents both services and objects pro-
cessed by them by graph nodes, and uses backward chaining for searching
plans satisfying the user query. The paper is a sketch rather than a complete
solution. In [10], nodes correspond to web services, but there is no abstract
phase and no objects directly represented in the graph. Edges are added at
the basis of concrete values of the parameters. There are no experimental
results and the authors seem not to care much about the efficiency of the
method. [6] uses weighted graphs for modeling parameters such as cost,
execution time and availability, and presents respective graph algorithms
for solving the corresponding composition problem. [9] describes a graph
approach to composing web services. It does not use a graph database, and
deals not with the abstract planning of any kind.

Preprocessing and pruning the state space using graph algorithms has
been examined in [4], where a preliminary over-approximation graph is gen-
erated in order to perform the exact planning on it.

[20] annotates ontologies with semantics information, and uses on top of
this a graph algorithm with similarity measures describing how services are
matched.

Graph databases [18, 3] are a relatively recent addition in the domain
of NoSQL databases, defined by rejecting the traditional database model of
relational tables, and using alternative solutions, in this case graphs. Neo4j
is one of the most popular implementations. [19] performs web service com-
position using the MapReduce approach aimed at processing Big Data. Our
method uses a different solution, but shares the idea of exploiting efficient
tools developed for dealing with big amounts of data.

abstract | gostract plans
| planner &N offe
e

collector

Figure 1: Planics overview. The rectangles stand for software components of the
system. The bold arrows correspond to computation of a plan, the thin arrows
model the planner infrastructure, the dotted arrows represent the user interaction.

2 Abstract planning overview

Planics is a system implementing an original approach which solves the
service composition problem in some clearly separated stages. Fig. 1 shows
the system overview. The formalism behind Planics is defined very precisely.
We describe it in a general way, formalizing only the parts relevant to the
described work, and pointing at [13] and [14] for the complete references.

2.1 Basic syntax and semantics of objects and services

The basic building blocks of Planics are objects and (web) services. The
services read and transform the objects, and the objects contain attributes,
being either other objects, or simple types such as real or integer numbers,
strings, etc. We denote by I the set of all identifiers, and by A the set of all
the attributes, with A C I.

An object type is a pair (t, Attr), where t € T and Attr C A. P is the
set of all object types. The objects types are composed of typed attributes
with domains. An object is a pair (id, type), where id € I and type € P. We
denote by id : type assigning type to the object id.

The services process objects, and have attribute lists in, out, inout refer-
ring to the objects read by a service (this does not mean being discarded),
produced by it, or both read and written, respectively. Moreover, abstract
formulas, in disjunctive normal form without negations, are defined over
the attributes, built from predicates isNwull(a) and isSet(a) stating that
attribute a is not set or set. An wuser query expresses what is the input
and what the output of the composition, and is technically modeled sim-
ilarly to a service. For a service s or a user query ¢, a specification is
specy = (ing, outy, inout,, pre;, post,), where x € {s, ¢}, with meaning of
attribute lists described above, and pre, and post, are abstract formulas
over attributes from lists.

Types of services and objects are classes organized in an inheritance tree
rooted in the abstract type Thing (abstract types cannot be instantiated).
All the services and objects are derived from the abstract types Service and

Artifact, respectively. The types are stored in an ontology. We define a
transitive, irreflexive, and antisymmetric inheritance relation Ext C P x P,
such that ((t1, A1), (t2, A2)) € Eaxt iff t1 # to and Ay C Ay. That is, a
subtype contains all the attributes of a base type and optionally introduces
more attributes.

Having defined the syntax, we now move towards the Planics seman-
tics. For an abstract formula «, a valuation of object attributes is a partial
function assigning, for every object, to every its attribute a a value true or
false if isSet(a) or isNull(a) predicates occur in a clause in «, respectively,
or is undefined otherwise. By an object state we mean an object with the
assigned valuation. A world is a pair consisting of a set of objects, and a
valuation function defined for them.

From the semantic point of view, the service types and user queries are
defined by their interpretations, which are pairs of worlds. In the first one,
called input world set for services and initial world set for a query, there are
objects of types belonging to in or inout lists, and the valuation is the family
of the valuation functions over pre,. In the second one, called output world
set for services and expected world set for a query, there are objects from
inout or out lists, and the valuation is the family of the valuation functions
over post,.

2.2 Abstract planning

An interpretation of a specification, as defined above, determines the pair of
worlds transformed by a service or a query. In planning, we want to combine
several services, modifying (parts of) consecutive worlds so that the query
would be satisfied. We now present how this is done in Planics.

We say that two valuations for two objects are compatible if the types of
both objects are the same, or one of them is a subtype of the another one,
and the valuations agree for every attribute. Similar worlds are identified
by the notion of world compatibility: worlds w and w’ are compatible if
they contain the same number of objects, and for every object state from w
there exists a compatible object state from w’, and vice versa. Worlds with
different numbers of objects are compatible if there exist a subworld in the
bigger world compatible with the smaller one.

The key idea of the abstract planning is transforming worlds by services
in order to satisfy the user query. A context function describes a mapping of
objects from the initial, expected and intermediate worlds into the attributes
of user query and services. Then, for two worlds w,w’ € W, referred to as
world before and world after, respectively, a world transformation for service
s transforms w into w’ in a context ctz, if these worlds can be mapped into
the attribute list of s, and the additional requirements are met. Let IN be a
ctx context image of the set ins. The world before contains a subworld built
over IN, compatible with a sub-world of some input world of the service

s, built over the objects from ing. The state of the objects from IN is
consistent with pres. The objects from IN and the objects not involved
in the transformation do not change their states in the world after. The
conditions for images of inout and out sets are given in [13].

A transformation sequence seq is a sequence of worlds transformed by
services in a context. For a user query ¢ = (W .,, W), seq is a user query
solution of ¢ if there exists a world w € W ., and some world w’ such that
seq leads from w to w’, and w’ is compatible with some wgmp S Wgwp.

Finally, we want to abstract away the ordering of services where it is
irrelevant. We introduce an equivalence relation of solutions: two solutions
are equivalent if the number of occurrences for every service type are equal
in them. For a sequence seq, a context abstract plan (CAP) is the set of all

the solutions equivalent to seq w.r.t. the relation defined above.

2.3 Collecting offers and concrete planning

While this article covers only the abstract planning, the brief description of
the concrete planning is given in order to explain how the planning process
as a whole works in Planics.

In the second planning stage CAP is used by an offer collector (OC),
i.e., a tool which in cooperation with the service registry queries real-world
services (see Fig. 1). The service registry keeps an evidence of real-world
web services, registered accordingly to the service type system from the
ontology. During the registration the service provider defines a mapping be-
tween input/output data of the real-world service and the object attributes
processed by the declared service type.

OC communicates with the real-world services of types present in a CAP,
sending the constraints on the data, which can potentially be sent to the
service in an inquiry, and on the data expected to be received in an offer in
order to keep on building a potential plan. The constraints are constructed
from the pre and post conditions. Usually, each service type represents a
set of real-world services. Moreover, querying a single service can result
in a number of offers. Thus, we define an offer set as a result of the offer
collecting planning stage.

Definition 1 (Offer, offer set). Assume that the n-th instance of a ser-
vice type from a CAP processes some number of objects having in total m
attributes. A single offer collected by OC is a vector P = [v1,v2,...,Un],
where v is a value of a single object attribute from the n-th intermediate
world of the CAP.

An offer set O™ is a k x m matriz, where each row corresponds to a single
offer and k is the number of offers in the set. The element o} ; is the j-th
value of the i-th offer collected from the n-th service type instance from the

CAP.

10

The detailed translation of a PlaniCs query to a set of constraints is
beyond the scope of this paper, because it would require describing the
whole inference process inside OC. More details on constraints can be found
in [14].

Finally, the concrete planning consists in finding an assignment of offers
to the CAP (a concrete plan), possibly satisfying some optimality criteria.

3 Representing Abstract Search Problem in a Graph
Database

In this section we show that the abstract planning problem (restricted to
matching types of services) can be translated to the reachability problem
for graphs. Then we use a graph database to prune the ontology for a given
user query.

3.1 Graphs
We start with introducing graphs and graph databases.

Definition 2 (Graph). A directed graph G is an ordered pair (V,E) such
that V is a finite set of vertices and E CV x V is a set of ordered pairs of
vertices, called edges. We write vi —¢ v2 for an edge (vi,v2) € E, where
v, 02 € V.

A path in a graph is a finite sequence of its vertices such that every consec-
utive pair of vertices is connected by an edge.

Definition 3 (Path). Given a graph G = (V,E). A path p of length k is
a finite sequence p = g, ..., v, of graph vertices, such that v; —g viy1 for
i€0,....k—1.

We say that v € V is a vertex of p, denoted by v € p, if v = v; for some
1€0,...,k.

Similarly, we say that e = (v,v") € E is an edge of p, denoted by e € p, if
v=uv; and v' = vjyq for somei €0,... k—1.

Definition 4 (SubGraph). Given two graphs G = (V,E) and G' = (V', E').
We say that G’ is a subgraph of G, denoted by G' C G, if V! C V and
E'CE.

A set of paths Sp in a graph G induces the subgraph G’ such that each
vertex and each transition of G’ is an element of some path of Sp. This
intuition is captured by the following definition:

Definition 5 (Subgraph induced by paths). Let Sp be a set of paths of a
graph G = (V, E). The subgraph G' = (V' E') of G induced by Sp is defined

as follows:

11

e V' ={veV|IpeSp:vep}and

o '={(v,v') € E|3peS,: (v,0)ep}.

3.2 Graph databases

A graph database is a tool for storing directed graphs and finding their
subgraphs satisfying certain properties, defined over vertices and edges that
are expressed by database queries!. From a formal point of view, this is
a graph algorithm with a precisely defined semantics. For example, one
could map a group of persons to vertices, friendship relations between these
persons to edges, and formulate a database query to find everyone who is
female, older than 50 years (assuming that every vertex has an attribute for
the age of the person it represents) and has at least two friends shared with
another person.

For some applications, it is easier to consider a variant of the reacha-
bility problem of finding all the paths between two explicitly known sets of
vertices: the initial and the final set. This can be easily reduced to finding
all the paths between a pair of vertices, one with an outcoming edge to every
element of the initial set, and the other one with an incoming edge from ev-
ery vertex of the final set. The latter approach is conceptually simpler and
sometimes more efficient. Since it can be applied to pruning ontologies, we
describe it formally. To this aim, we begin with showing how a given graph
is stored in the database, where the operations addNode() and addEdge(),
having a clear meaning, are applied.

Definition 6 (Graph database). Given a directed graph G = (V, E). G is
said to be stored in a graph database DB if addNode(v) is executed for every
vertex v € V and addEdge(v,v") is executed for every edge (v,v') € E.

Then, searching a stored graph is defined.

Definition 7 (Graph database query result). Let G = (V, E) be a directed
graph stored in a graph database DB. Let q’f)B = (vr,vp, k) be a database
query, where vy,vp € V and k € N. The result of the query q%B applied to
DB is the subgraph G, C G, induced by the set of paths of G' of length at most
k, which begin with vi and end with vp. We refer to Gy by result(G, ¢%).

From a practical perspective, graph databases can be used for storing and
search effectively very big state spaces. In addition, the graph representation
enables for a graphical visualization of the graphs stored in the database
as well as the query results. Advanced features are available in the area of
guaranteeing data redundancy, distributing data between multiple machines,
and optimizing the database performance.

'One should not confuse a database query (specifying what is to be found in the
database) and a user query (specifying the task of the composition process).

12

3.3

Pruning an ontology

Our graph-based approach to pruning ontologies for abstract planning con-
sists of the following stages:

1.

Choosing an upper bound (k) on the plans length for which the search
is to be performed.

. Encoding the ontology in the graph database. Every object type and

service type of the ontology is represented by a distinguished vertex.
The edges connect pairs of vertices, where one vertex models a service
type while another one an object type. For a vertex representing a
service type s, an incoming edge from a vertex representing an object
type models that this object type is an input for the service type s.
Similarly, an outgoing edge to a vertex representing an object type
models that this object type is an output of the service type s. The
rules are also applied to the object types derived from every object
type occurring in the input and output lists of a service type. After
application of these rules we get the ontology graph Gopn:. Later in
this section we give Example 1 showing the graphs defined and used
by our reduction.

Extending the ontology graph Goy: to the query graph Gy, where
Gont € Gy, by adding the initial vertex and the final vertex, for a
user query q. The outgoing edges of the initial vertex are connected
to the vertices representing the object types of the initial worldset of ¢
and to the vertices representing the service types having empty input
lists. The ingoing edges of the final vertex start from the vertices
representing the object types of the expected worldset of ¢. Similarly,
the corresponding edges are added for the subtypes of the object types
mentioned above.

Searching for a set of the paths (of length restricted to k) between the
initial and the final vertex of the query graph G,. This objective is
expressed by a database query fed to the graph database. The result
is the query subgraph G4s C Gy.

(Optional Postprocessing) Removing recursively from the query sub-
graph G the vertices representing service types, for which some ob-
ject types of their input lists have not been identified by the search.
Removing them is not necessary, because we will add missing types
when building the pruned ontology. However, those service types can-
not be executed in the reduced ontology, so filtering them out makes
it smaller and, hopefully, easier to handle for the planners. We can
also remove the vertices of object types not connected to any vertices
representing service types.

13

6. Pruning the original ontology to the service and objects types rep-
resented by the vertices of the query subgraph Ggs. Then, adding
the types of the objects possibly produced by the service types in the
reduced ontology and not relevant for any abstract plan which can
be found, but required for an ontology to be complete. The pruned
ontology can replace the full ontology in the planning process.

The algorithm described above can be repeated for an incremented depth
k or run for any depth. It is complete and sound for the abstract plans of
length restricted by the depth k chosen as a parameter. This means that
the ontology pruned preserves all the abstract plans of length k£ and does
not introduce any abstract plans which could not be generated starting with
the original ontology.

In order to simplify the algorithms, we introduce two restrictions on the
object and service type inheritance. 1) The multiple inheritance of objects
types in not allowed. 2) Each service type is directly derived from the
Service class.

These restrictions are technical and can be lifted at the price of making the
algorithm more complex.

Now we are in a position to describe the algorithm formally.

3.3.1 Ontology Graph: Encoding an ontology

For the purpose of this section we recall some notions related to Planics,
which are used in this section.

Definition 8 (Ontology). By an ontology we mean a triple Ont = (S, T, Ext),
where

o S is the set of all the service types,

o T is the set of all the object types, i.e., the types of Artifact and
Stamp, and their descendants,

o Euxt is the inheritance relation of the object types.

Moreover, we recall the function 7 : 22 — 2T, such that 7(0) =
Usco{t € T |t =type(o) V (type(o),t) € Ext} which assigns the set of the
types and subtypes to each set of objects.

Assume we are given an ontology Ont. Our first task is to encode Ont
as a graph. It is quite common to use graphs for modeling the inheritance
of classes. We extend this approach by modeling service and object types
as vertices of a graph stored in the graph database, and encoding with the
edges the relation of processing and producing the objects by service types.
In particular, we introduce the directed edges connecting the vertices repre-
senting the service types with the vertices corresponding to the (sub)types
of the objects processed, in the way captured by the following definition.

14

Definition 9 (Ontology graph). Given an ontology Ont. By the ontology
graph we mean the graph Gont = (Vont, Font), where

o Vo = Vs UV with Vg = {vs | s €S} and Vi = {vg | t € T},

e Fo,: = Es U Er with

Es = {(vs,vt) | s €S At e T(outsUinouts)},
Er = {(vt,vs) | s€S At e T(insUinouts)}.

Example 1. In Fig. 2 the ontology pruning abstraction is applied to a
simple ontology being a variant of the examples shown in the paper PlaniCs
[16] describing Planics. There are (among others) the object types of Nails,
Boards and Arbour defined (all being the subtypes of Ware, and of Artifact),
and there is service Selling for transactions concerning subtypes of Ware.
There is service WoodBuilding building Arbour out of Nails and Boards.
The user query can be described as: “I have some nails and boards, I want
to get an arbour”.

In the graph, the oval vertices represent the object types of the ontology,
the rectangular vertices represent the service types, while the solid edges
connect object types with service types according to Definition 9. The dotted
edges extend the relations of processing objects by services to the inherited
object types. The inheritance relation is represented by the dashed arrows
outgoing from a base type to the subtype (note that these edges do not belong
to the query graph, but the dotted ones are defined on their basis).

In the figure there are shown all the consecutive stages of the reduction
that are explained in the following example instantions in this section.

Example 2. In the graph of Example 2, the service CarRepair is de-
fined, where {(c,Car)} C inoutcarRepair- The edges VCarRepair — VCar
and Voar = VCarRepair @€ added to the ontology graph. Moreover, the edges
VCarRepair — UTruck ONA UTruck — VCarRepair 0T€ also added for Truck being
a subtype of Car. Note that our type system does not enable any restric-
tions for covariance of types, thus it is impossible at the type level to define
a service which does not accept subtypes of some object type. This effect can
be obtained in different ways (for example, by setting attributes), but when
reasoning at the level of types, we need to consider all the subtypes for every
object type.

3.3.2 Query Graph

The ontology graph G, (stored in the graph database) represents the
ontology Ont. The next step is to extend Gpn: with a representation of a
user query q by constructing a query graph, which contains also an nitial
vertex vy and a final vertex vp. The initial vertex is connected to the vertices

15

.
.

3 e

o]
- /
e

i

Selling 1

PaintBuilding

Figure 2: The query graph for the example. The oval and rectangle vertices cor-
respond to object types and service types, respectively. The triangle vertices S and
F model the start and final vertices, resp. Dashed edges represent the inheritance
of object types (do not belong to any of the graphs used by our approach). The
solid edges model consuming and producing objects by services. The dotted edges
extend processing objects to derived object types. The double-sided arrows be-
tween a pair of vertices represent two single-sided arrows, in both directions, with
the same properties (for example, bold and dotted). The number ¢ means that the
corresponding type belongs to Ont; (and Ont;y1,Ontiya,...)

corresponding to the types of the objects from the initial worldset. The
vertices corresponding to the types and subtypes of the objects from the
expected world of the user query are connected to the final vertex. vy is also
connected to the vertices corresponding to each service type having the list
in and nout empty.

Definition 10 (Query graph). Given the ontology graph Gont = (Vont, Eont)
and a user query specification q¢ = (ing, inouty, outy, preq, posty), where inout,U
out, # 0. By the query graph we mean the graph G, = (Vy, E,), where:

o V,=Von: U{vr,vr},

o Ey=Eon U{(vg,vp) |t € T(outy Uinouty)} U
{(vr,v) |ve € VT A (Fo € (ing Uinouty)) : t € type(o)} U
{(vr,vs) | vs € Vs A ing Uinouts = 0},

Notice that the subtypes are added only for the object types of the expected
worldset which corresponds to the fact the the user accepts 'more’ than he

2For the final world without any objects, the reduction would be not well-defined and
result in no pruning at all. As will be explained later, the abstraction is guided by the
object types from the final world.

16

requires. Clearly, one cannot assume that the user possesses 'more’ (so no
subtypes) than specified by the initial worldset.

Example 3. In Fig. 2, the triangle shapes denoted with S and F model the
initial node and final node of the query graph, respectively. The adjacent
edges are defined according to Def. 10. Recall that the edges from the initial
vertex are outgoing to the vertices for object types from the initial world
of the user query, and to the service Select, which produces objects out of
nothing. The bold edges (solid and dotted) belong to the paths between the
initial and final vertices, restricted to the depth 3 (so their length is bound
by 2-3+ 2 =28. The graph database returns this set of paths as a result of
the database query.

In Example 1, the edge from vy to the node VpineBoard S added to build
the query graph, because PineBoard is a subtype of the object type Board.

3.3.3 Query k-subgraph: pruning Query Graph

Our next step consists in pruning the query graph leaving only its subgraph
(called the query k-subgraph) induced by all the paths of length k from the
initial vertex to the final vertex. This subgraph is produced as the result
of a database query to the graph database storing the query graph. In this
query the depth is given by 2 x k + 2 to reflect the fact that a plan of length
k corresponds to a path of length 2 x k + 2 in the query graph because of
its construction.
Below we formalize the above concept.

Definition 11 (Query k-subgraph). Let G, = (Vg, Ey) be the query graph
and k € N. The query k-subgraph Glgs C Gy s the result of executing the
database query Q*+2 = (vr,vr, 2k + 2) onto the query graph, where v, vp
are the initial and final vertices of Gy, respectively.

Example 4. In Fig. 2, bold lines correspond to the edges belonging to the
query 3-subgraph. The node set consists of all the adjacent vertices.

In order to define formally the ontology pruned we need the notion of su-
pertypes of a set object types. Formally, for ' C T we define superTypes(T) =
Uer{t' € T | (¥, t) € Ext*}.

The pruned ontology is the final result of the graph reduction. As a
special case, empty sets of service and object types are returned if there
exists an object type from the expected world which cannot be produced
(there is no path in the query subgraph leading to the node modeling it, and
the same is true for all its subtypes)?3

3Note that according to the semantics of abstract planning, all the object types from
the expected world need to be present in the expected world. If the user requests an
alternative of object from this set, it can be done by providing several queries or by
specifying a postcondition.

17

We say that Onty is an empty ontology if it has empty sets of services
and object types. Sometimes, empty ontologies can be identified by simple
property of the query k-subgraph:

Definition 12 (query k-subgraph generating empty ontology). Let G5 =
(Vyss Eqs) be the query k-subgraph. We say that Ggs generates an empty
ontology if 3o € O such that o € inouty U outy and for Vt € T ({o}), there
are no incoming transitions to vy € Vis.

The pruned ontology is formally defined as follows:

Definition 13 (k-Reduced ontology). Let Ont = (S, T, Ext) be an ontology
and Ggs = (Vys, Eys) be the query k-subgraph. By the k-reduced ontology we
mean the ontology Onty, = (Sg, Tk, Exty), which is empty iff Gqs generates
an empty ontology, and otherwise we have:

o Sy, ={seS|vs €V},
o T) = superTypes(Uses, T (ins Uinouts U outs)),
e Fuxtp = FExtN (Tk X Tk)

Notice that the k-reduced ontology contains all the service types and all the
object types corresponding to the vertices of G’q“S. In addition, it contains
all the supertypes of the subtypes of the sets of the input and output object
types of each its service type.

Example 5. In Fig. 2, for every node there is shown a number i, mean-
ing that the type represented by this node belongs to the reduced ontology
Ont; (and Ontiy1,0ntiyo,...). Note that some service and object types
(for example, the node Car, its descendant Truck, and service ServiceCar
operating on them) are added for bigger depths, when a plan is found for
smaller depths.

Service type PaintBuilding is included to the reduced ontology because
of a self-loop for the Arbour type.

In Definition 13, supertypes of object types are added with different
motivation than subtypes in Definitions 9 and 10. In contrast to subtypes, a
supertype cannot substitute an object type in abstract planning. However,
at this stage all the types relevant for planning have been identified. We
want the reduced ontology to be complete and well-defined, i.e. every object
type should have all its predecessors (i.e., supertypes) up to Object type.
This is important both from the perspective of theoretical correctness and
in order to ensure that planers could work correctly on the reduced ontology.

Example 6. In Example 1, GX_ (with k = 2) contains (among others) the
vertices VBoard, UNailss ONA VArpour- 1The vertices vware and vopject do not

18

occur in G’;S, but these types are added to the reduced ontology being super-
types of some of the vertices listed above. The verter Vgcocert does not belong
to G’;S, but the type EcoCert and its predecessor Cert are elements of the
2-reduced ontology, because EcoCert is the type of the service Build Arbour

out set.

We assume that the out, list of the user query ¢ is not empty as otherwise
the reduced ontology would be equal to the original one. This follows from
the fact that then one would need to consider how every object type can be
produced, resulting in no reduction at all. On the other hand, if the input
lists iny and inout, of the user query are empty, then the object types of
out, can still be potentially produced by service types which create objects
”out of nothing”, provided such service types are in the ontology.

3.4 Correctness of the reduction

Now we prove that the reduced ontology preserves all the user query so-
lutions. To this aim we define object type derivation sequences (OTDSs),
showing how the object types of the expected worldset are produced in each
user query solution by a sequence of service types interleaved with object
types. For every user query solution, we define the set of all the OTDSs
producing all the object types of the expected world. We show that each
service type s of the user query together with the set of all the types and
subtypes of ing U inouts U outg is present in some OTDS. Finally, we show
that each OTDS can be mapped to the path in the query k-graph, thus
proving that all the object and service types needed to preserve all the user
query solutions are present in the reduced ontology.

Definition 14 (Object type derivation sequence (OTDS)). Given an ontol-

ogy Ont, a user query q, a solution of q seq = ((51, ctxsoll), ooy (Sk, ctxg“k))
of length k, and m < k. By an object type derivation sequence (OTDS
for short) we mean a sequence otds = (T°,s*, T, s2,T% ..., T™ "1 s™, T™),

satisfying the following conditions:
° 81,...,8m €{s1,...,Sk}-

o TO ..., T™ CT, where |[T"| =1 for 1 <i<m,
T =1 if ing Uinouty # 0, and T° = () otherwise*,

o T™ C T (inouty Uouty),

e T° C T(ing Uinouty),

4Inclusion of empty sets can occur in the following definitions. For the sake of brevity,
we do not distinguish this special case.

19

e there is a monotonic function tr : {1,...,m} — {1,... k} that maps
the index of every service type of otds into the index of an element of
seq, such that for each 1 <i<m and 1 < j <k iftr(i) = j, then the
following conditions hold:

- Si = Sj,
— T C T (outs, Uinouts,),
— T1 C T (ins, Uinouts,).

By OT'DSo(Ont,q,k) we denote all the object type derivation sequences
the given ontology, user query and any plan of the length equal or less than
k, producing the object types from the set 7(O), for O € Q.

Note that the definition of OTDS is based on an abstract plan, but
the mapping refers only to the sequence seq, without any reference to the
valuations. This can be explained by the fact that our reduction works at
the level of types, so OTDS preserves the mapping of object types to service
types in a sequence, assuming that there are valuations making this sequence
a valid plan.

Figure 3: Mapping of odts to seq.

Example 7. In Fig. 8 we show a context abstract plan with a corresponding
sequence seq = ((51, ctxsoll), ooy (85, ctx8055)), and otds € OTDSp,(Ont,q,5)
mapped to it. Os = {n : Nails,b: Boards,a : Arbour,e : EcoCert,p1,p2,ps,p4,Ps :
PriceStamp}. Concerning the remaining object sets we only state, for the
sake of brevity, that O1,...,04 C Os.
e s1 = Transport, {n : Nails,p; : PriceStamp} C Oy,
ctzy (inouts,) = {n : Nails},
ctzy (outs,) = {p1 : PriceStamp},
e s9 = T'ransport, {b: Boards,pb : PriceStamp} C Oa,
ctzg, (inouts,) = {b : Boards},
ctzg, (outs,) = po : PriceStamp,
e s3 = WoodBuilding, {e : EcoCert,n : Nails,b: Boards,a : Arbour,ps :
PriceStamp} C Os,
ctw%”g (ins,) = {e : EcoCert},
ctagy, (inoutsy) = {b: Boards,n : Nails},

ctzgy, (outsy) = {a : Arbour, p3 : PriceStamp},

20

o sy = Selling, {a : Arbour,ps : PriceStamp} C Oy,
ctzg, (inouts,) = {a : Arbour},
ctzg, (outs,) = {ps : PriceStamp},

e s5 = T'ransport, {b: Boards, ps : PriceStamp} C Os,
ctxgy (inouts;) = {b: Board},

ctzg, (outs;) = {ps : PriceStamp}.

The mapping tr is defined as follows:

o ir(l)=1
o ir(2) =3
e ir(3) =14

It determines the following OTDS: T° = {Nails}, s' = Transport,
T! = {Nails}, s> = WoodBuilding, T?> = {Arbour}, s3> = Selling, T® =
{Arbour}.

Pruning may reduce some plans to the minimal form, where every service
is relevant for the composition. This notion is captured by the following
definition:

Definition 15. Minimal solution Let seq = ((sl,ctxsoll), - (sk,ctacg“k))
be a user query solution for q. We say that seq is a minimal solution, if no
strict subsequence of seq is a user query solution.

The following lemma states that all the service and object types occur-
ring in all the object type derivation sequences for every valid plan, are
represented in the k-query subgraph.

Lemma 1. Given an ontology Ont and a user query q, a minimal solution
of q seq = ((81, ctxs’oll), ooy (Sk, ctxso’“k)) of length k. The k—reduced ontology
Onty, contains every service type s; and every object type t € T (Oy).

Proof. The proof is by mathematical induction. The induction will be over
the length seq, starting from its end, that is we start counting from the
final state, towards the initial one. We do not apply the induction di-
rectly to the minimal solutions, which cannot be made shorter. Instead,
the reduction will operate on reversed prefixes of minimal sequences. Let
seqy = ((sk,lﬂ,ctafg“k_j;rl), e (sk,ctxé"k)) be the reversed prefix of seq
for 1 <1 <k (for [= k we have the whole sequence).

Basis: | = 1 We have seq; = ((sk,ctazg“k)). For each assignment of
objects from Oy to the input and output arguments of s, the corresponding
OTDSs have the following form: otds = (T*~1, s {t*}), for s, = s*, t¥ €

21

T (inouts, Uouts,) and TH=1 C T (ins, Uinouts,). It is directly represented
by the following paths in Ggs(Ont, q,k): vi = vge — vy — vp if Tkl = ¢,
OT V] — Vgh—1 — Ugk — Ugk — Up otherwise, for TF=1 = {¢F=11.

For some objects produced by s* but not belonging to inouty U outg,
their object types need not to be in any OTDS. However, all the object
types produced by every service in the reduced ontology are also explicitely
added to it (see Def. 13).

Inductive case: Assume that the statement holds for Ggs(Ont,q,1).
We have that s; and all the object types from 7(O;) are represented in
Gys(Ont,q,1), for 1 < i < 1. We need to show that s;_; and all the object
types from 7 (Oy_;) also are in Gg4s(Ont,q,1+1).

sk—; belongs to at least one OTDS, because the plan is minimal, thus
every service processes some object from the final world. Otherwise, it could
be removed from the plan, which would not be minimal. Objects are not
discarded, thus every object produced by any service in the plan is in the final
world. For a service, the only way to produce or change objects is to have
them in its output lists, as the services have no side effects (such as modifying
global variables, changing variables accessed by read-only pointers, etc).?

Every object type occurring in the plan is either introduced in the initial
world of the user query, or produced by a service. Later it can be possibly
processed by other services, or enable producing other objects (if belongs to
inout or in list, respectively). This sequence of transformations is captured
by a corresponding OTDS.

The length of ODTSs mapped to seq|;,; is bound by k + 1, as there
are k + 1 services in this prefix and every service in every OTDS is mapped
to at most one of these services. Let assume that s*~! belongs to otds =
(10, s', {t'} ... {1}, s™ {t™}). There is the corresponding path v; —
Vgo — Vg1 — Vg1 —> -0 —> Ugm — vgm —> vp € Gy if dnouta Uing # 0,
OF U] — Vgl — Uyt —+ -+ — Ugm — Ugm — U € Ggs otherwise. From the
definition of the reduced ontology it follows that it contains both s~ and
all the object types processed by it and belonging to inout x—i+1 U ingr—i+1.

Concerning the objects produced by s*~! but not belonging to inout j—-i+1U
ingk—i+1, their types need not to be in any OTDS, and in consequence, in
any path of G,s. However, all the object types produced by every service
added to the reduced ontology are also explicitely included (see Def. 13),
with their subtypes.

Concerning the inheritance, note that we need only to ensure that every
OTDS is represented in the query subgraph, and paths in the query subgraph
directly correspond to OTDSs, with respect to the subtypes of every object
type. This is guaranteed by Def. 9, by adding the edges between nodes

5This is why there are no services without output in seg, as they would be removed.
We have no casting nor dynamic transformations of object nor service types, thus object
types do not change between processing by services.

22

representing services and nodes representing subtypes of every object type
processed by these services.
O

The corollary from the above lemma states that the pruned ontology can
be used as an input to an abstract planner, and for every user query ¢ and
the given depth k, a solution for ¢ of the length k will exist in the k-reduced
ontology Onty, if and only if it exists in the complete ontology® Ont.

Corollary 1. For every service type s; and every object o € O; occuring
mn seq = ((sl,ctwsoll), . (sk,ct:cg“k)) for 1 <i <k, and o € O; for some
1 < j < k, we have that these services and objects are represented in the
reduced ontology, i.e. s; € S, superTypes({type(o)}) C T and Ext is the
inheritance relation from the full ontology restricted to the types present in
the reduced one, for Onty(Ont,q,k) = (S, T, Ext).

Proof. By Lemma 1, every service and object type from each minimal trans-
formation sequence are present in Onty. By its construction, according to
Def. 13, all the supertypes are added for every of these types, so the type
system in the reduced ontology is complete. O

Note that the types from the user query, with their supertypes, need
not to be added explicitely. The explanation is that either they are added
because there exists at least one path in Gys(Ont,q,l) to the correponding
node (or its subtype), or there is no such a path and we return an empty
ontology.

While the reduced ontology is formally sound and complete, we know
in advance that some of the object and service types added in Def. 13 will
not contribute to any valid plan. For service types, this can be true because
of some object types processed by them, as explained below. Every object
type represented by Ontg falls into one or more of the following categories:

1. is an input or output for a service type, and belongs to some path in
the query k-subgraph.

2. is an output for a service type. It does not belong to any path in the
query k-subgraph, but has been added explicitely by Def. 13,

3. is an input for a service type. It does not belong to any path in the
query k-subgraph, but has been added explicitely by Def. 13.

The object types which satisfy only condition 3. do not contribute to
any valid plan (because the service type cannot execute as it lacks some
input object types, which have been added to ontology but there is no way

5As will be shown in the example, the solution is guaranteed to exist in Ont, but
sometimes it may be found in Ont; for ¢ < k.

23

to provide them) and can be removed by postprocessing, along with the
corresponding services types.

From a practical perspective, reducing the length of plans is an advan-
tage. As it will be shown in the section describing experimental results, the
planners are very sensitive to the length of plans. In particular, the perfor-
mance of the SMT-based planners degrades very quickly when the length of
plans grows. Preserving minimal plans decreases also the number of services
in the reduced ontology.

Example 8. Assume that in addition to those defined in Example 7 we have
the following services for some Og, O7,0g C O:

o sg = Select, {a: Arbour,pg : PriceStamp} C Og,
ctxg, (inouts,) = {a : Arbour},

ctxs (outss) = {pe : PriceStamp},

e s7 = Select, {t : Truck,p7 : PriceStamp} C Oy,
ctxg, (inouts,) = {t : Truck},

ctxg (outs;) = {p7 : PriceStamp},

e sg = Selling, {a : Arbour,ps : PriceStamp} C Os,
ctgs, (inoutss) = {a : Arbour},

ctxgs (outsy) = {ps : PriceStamp},

Now we consider some examples of transformation sequences and whether
are they preserved in the reduced ontologies:

1. seqy = ((sﬁ,ctx‘z)"'ﬁ), (s7,ctxg), (ss,ctx‘g‘g))
seq; will not be preserved in the reduced ontology Onti. The reason is
that there is no path in the query 1-subgraph going through the Truck
object node (see Fig. 2). Instead, the transformation sequence seq; =
((s6, ctzgy), (s, Ct$8088)) will be preserved in Onty, satisfying the user
query.

However, seq is preserved in Onty.
2. seqqy = ((33, ctacsog’g)). seqs 1s preserved in Onty.

3. seqs = ((33,ct$5’033), (34,ct$5’o44)). seqs s preserved in Onti. This case
1s interesting, because the solution is determined by two sequences in
the query 1-subgraph, one of which does not correspond to any valid
object type transformation. In particular, we have (among others)
the following paths: vi — UNails —* VSelling — VArbour — UF, and
VI = USelect — VArbour — UF. The first one does not represent any

24

transformation of object types from a valid plan (contrary to the path
V[— USelect — VArbour — USelling —7 VArbour — UF, which occurs for
k > 2), but it includes the Selling service type to the reduced ontology.
In the future, we plan to make the database search more precise, so
that it would follow exact object transformations, without taking all
the object types (and their descendants) belonging to inout list of a
service type.

It can be easily seen that the presented abstraction is in fact an over-
approximation. Some of the paths in the query k-subgraph returned by the
database can have no corresponding object type derivation sequences for
any valid plan.

Example 9. In Example 1, object type EcoCert along with its ancestor
Cert are added to the reduced ontology despite the fact that they do not
participate in any potentially valid plan for the specified depth k = 2. The
explanation is that we need to assure that the service type Wood Building has
all the required input and output types in the reduced ontology (so EcoCert
is added) and that every object type needs to have all its predecessors in the
ontology (so Cert is added).

When, for every expected world, there is no path to at least one of its
object types in the query subgraph, this means that no valid abstract plan
exists. However, the existence of such paths for all the object types of an
expected world does not guarantee that there is a valid abstract plan. This
is because the graph approach works at the level of types, and does not
take into account the issues such as checking pre- and postconditions, and
providing enough objects for cardinality constraints. Checking the pruned
ontology by an abstract planner is still needed, but usually the scope of
this search will be significantly reduced. Thus, the method is complete and
sound, and every valid plan will be found in the query subgraph for the
chosen depth.

Note also that the self-loops in Definition 9 of the ontology graph are
necessary despite the fact that possible setting of object attributes by the
corresponding services is irrelevant at the level of matching types. What
matters is that the resulting OTDSs can decide about including these ser-
vices to the pruned ontology.

The restriction on depth is introduced to prevent queries from searching
the whole ontology and to keep the search local. All Planics abstract
planners perform only the bounded-depth searches. The intuition is that we
expect the user queries to be local in the sense of involving only a restricted
number of services. In general, there is no bound on the lengths of plans, as
some combination of services can set and unset selected attributes of objects,
resulting in valid plans of infinite lengths.

25

3.4.1 Implementing the algorithm in the graph database

As we have described above, the role of the graph database is to represent
the ontology graph and, for every user query, to extend it to the query graph
and find the query subgraph. We used the graph database Neo4j, working in
the standalone mode (that is, without the server installation, but run over
a Java API communicating with the database, performing operations such
as adding vertices and edges, and labeling them). The graphs are directly
represented by the graph database in accordance with its semantics model,
so no transformations of any kind are needed.

The general way of interaction with the database is as follows: first the
ontology graph is stored in the database. It can be expected to be of a
significant size, but its construction is performed only once, independently
of user queries. Then, for each user query, the query graph is constructed
by adding the initial and final vertex, with respective edges. Next, the
database query is entered to Neo4j, expressed in the language Cypher. It is
independent of the user query and its meaning is: find all the paths of the
depth at most k, between the start and the final vertices. Finally, the start
and final vertices with their edges are removed from the database, and the
system is ready for the next user query.

Example 10. The search for query k-subgraph is expressed by the following
Cypher query, for k = 8. node(1) and node(2) correspond to the initial node
vr and final node vp, respectively:

start a=node(1), b=node(2)
match p=a—[r:PROCESSEDx0..8]—>b
with p return p;

PROCESSED is alabel of all the edges. It is introduced to distinguish edges
with different meanining, for example representing inheritance of types.

The database returns the query subgraph.

3.4.2 Postprocessing the query subgraph (optional)

The set of paths in a query subgraph returned by the database may contain
some vertices corresponding to services which cannot execute in the pruned
ontology, because some of the objects from their input lists are missing from
the subgraph. Postprocessing recursively removes all the occurences of such
services. It also removes the objects not associated with any of the remaining
services. We can also remove vertices representing the services, which have
only their inout lists nonempty.

26

3.4.3 Generating the pruned ontology from query subgraph, and
testing the query

Finally, the pruned ontology is generated so that it contains all the service
and object types corresponding to the vertices of the query subgraph. It
is saved in a file. The user query is tested on it using an abstract planner
for the depth k being the parameter of the Cypher query. Note that any
Planics abstract planner can be applied, including all those presented in
this paper, what will be shown in the section presenting the experimental
results.

4 Example explained in detail

The benchmarks tested in this paper are generated automatically for pre-
defined parameters, using the same generator as in [12] and other papers
about Planics. Names of services and objects are random strings. Several
papers about abstract planning in Planics describe more human-readable
examples from more realistic domains. In this Section we describe in detail
the benchmark number 3. There are 256 instances of service types in the
ontology. Only one abstract plan exists for the following user query:

in=Dxvcr dxvcrl
inout=0pufo opufol
out=Vpumc vpumcl, Hemjg
hemjg2, Wldue wldue3
pre=isSet (dxvcrl.xii) and
isSet (opufol.syk) and
isSet(dxvcrl.hvf) and
isSet (opufol.gty)
post=isSet (hemjg2.efx) and
isSet (opufol.syk) and
isNull (opufol.gty) and
isNull (wldue3.zuh) and
isNull (vpumcl.ihy) and
isNull (wldue3.txm)

That is, there are two objects in the initial world, one of which is ex-
pected to be also in the expected world. Additional there objects are to be
produced. There are some requirements on attributes of those objects.

In Fig. 4 it is shown the query subgraph, as displayed by the Neo4j
visualization module. Silver and purple nodes represent the services and
the objects, respectively. The red nodes labeled with 1 and 2 stand for the
initial and final node. For this example, this graph directly corresponds to
the (only) abstract plan in the obvious way: every path from the initial to
the final node corresponds to a partial order of the plan.

27

SERVICE_Name ARTEFACT_Name [98]

@ Properties

)

Figure 4: The multi-plan graph for Ontology 3. Explanations are provided in the
text.

5 Experimental results

For the experiments we used the graph database Neo4j, version 2.1.6, run-
ning on Linux. We do not report on the technical issues like setting up
indices, optimizing storage, etc. In fact, the default configuration has been
applied. The experimental results are shown in Table 1. The experiments
are performed in an analogous way as in [15] and other papers describing
the Planics abstract planners, i.e. we use automatically generated bench-
marks and user queries described there. Ontologies are pruned on the basis
of respective query subgraphs by manipulating the SMT planner structures
in memory, without generating the files for pruned ontologies.

It can be seen that pruning the search space gives very significant re-
ductions in verification time. It is also worth noticing that the examples
have the following structure: every three consecutive benchmarks generate
the same plan (or plans), but there are different numbers of services not
participating in these plans. Planning times grow respectively for the SMT
planner without pruning, and after filtering by the graph database remain
similar, of the same order. Differences can be traced back to different order-
ing of services when pruning the ontologies to match the subgraphs returned
by the graph database.

Note that in a realistic scenario of the real-world system application, the
advantage of our approach over other planners could be even more signif-
icant, because the full ontology could be encoded only once in the graph
database. Then, for every user query only the initial and final nodes would
need to be added, and the respective search be performed. The existing
planners need to encode the whole ontology for every search.

6 Conclusions and Future Work

In the paper we proposed an original approach significantly improving the
effectiveness of abstract planning phase in the Planics web composition sys-

28

Table 1: Experimental results for GraphDB. Execution times are given in seconds.
First refers to time required to find the first solution. Next is time after which all
the remaining solutions have been found (if exist). UNSAT is time in which the
solver determines that no more plans exist. to means timeout, set to 1000 seconds.

example SMT GraphDB+SMT
First | Next | UNSAT || k£ | First | Next | UNSAT

1 2.74 - 4.11 0.17 - 0.25
2 14.46 - 18.21 8 0.2 - 0.44
3 15.01 - 17.43 0.2 - 0.52
4 4.25 12 8 0.68 1.8 3

5 6.82 29.9 25 8 | 0.75 2.15 2.23
6 15.32 | 32.41 53.39 0.73 2.02 2.93
7 5.98 - 27 0.57 - 4.1
8 33.18 - 81 11 | 045 - 5.05
9 101 - 271 0.46 - 5.46
10 15 59 95 5.48 | 22.17 69
11 97 156 392 14 | 12.46 31 99
12 to to to 7.78 16 128
13 75.22 - 225 6.68 - 20
14 140.7 - 812.3 11| 3.88 - 70.34
15 to - to 5.8 - 57.16
16 to - to 29.9 - 846.4
17 to - to 14 | 24.1 - 897.2
18 to - to 29.3 - 902.1

tem. It consists in modeling the planing as a graph and applying a graph
database for pruning the search performed by an abstract planner. The ex-
periments performed on planning benchmarks confirmed that pruning makes
planning times shorter, sometimes by several orders of magnitude. The over-
head caused by database search is very small. An additional advantage is
enabling the way of visualizing structures of ontologies, what can be helpful
in several applications, such as doing optimizations, analyzing which services
and objects are used most often, etc.

As a next step we plan to implement the whole abstract planning process
by means of graph algorithms. This is motivated by the fact that in the
cases where the pruned ontologies are still to hard for existing planners,
there is the space for improvements and it is likely that graph algorithms
can profit from the ability to exploit the structure of ontologies and queries.
We also plan to extend the benchmarks, resulting in more complex abstract
plans, with several branchings between partial orders, and with inheritance
of objects and services types.

29

References

1]

A Graph-Based Web Service Composition Technique Using Ontological Infor-
mation (2007).

AMBROSZKIEWICZ, S. Entish: A language for describing data processing in
open distributed systems. Fundam. Inform. 60, 1-4 (2004), 41-66.

ANGLES, R., AND GUTIERREZ, C. Survey of graph database models. ACM
Comput. Surv. 40, 1 (Feb. 2008), 1:1-1:39.

DENg, S., Wu, B., YIN, J., AND Wu, Z. Efficient planning for top-k web
service composition. Knowledge and Information Systems 36, 3 (2013), 579—
605.

Doriwa, D., HORZELSKI, W., JAROCKI, M., NIEWIADOMSKI, A., PENCZEK,
W., POLROLA, A., SZRETER, M., AND ZBRZEZNY, A. Planics - a web service
composition toolset. Fundam. Inform. 112, 1 (2011), 47-71.

ELMAGHRAOUI, H., ZAoul, 1., CHiaADMI, D., AND BENHLIMA, L. Graph
based e-government web service composition. CoRR abs/1111.6401 (2011).

HASHEMIAN, S. V., AND MAVADDAT, F. A graph-based framework for com-
position of stateless web services. In ECOWS (2006), IEEE Computer Society,
pp- 75-86.

KnapPik, M., NIEWIADOMSKI, A., AND PENCZEK, W. Generating none-
plans in order to find plans. In Software Engineering and Formal Methods -
18th International Conference, SEFM 2015, York, UK, September 7-11, 2015.
Proceedings (2015), pp. 310-324.

L1, X., ZHAO, Q., AND DAI, Y. A semantic web service composition method
based on an enhanced planning graph. ICEE, 2288-2291(2010), 2010.

MaAuMmouD, C. B., BETTAHAR, F., ABDERRAHIM, H., AND Saimpi, H.
Towards a graph-based approach for web services composition. CoRR
abs/1306.4280 (2013).

NE04J. Neo4j - The World’s Leading Graph Database. 2012.

NIEWIADOMSKI, A., AND PENCZEK, W. Smt-based abstract temporal plan-
ning. In Proceedings of the International Workshop on Petri Nets and Software
Engineering, co-located with 35th International Conference on Application and
Theory of Petri Nets and Concurrency (PetriNets 2014) and 14th International
Conference on Application of Concurrency to System Design (ACSD 2014),
Tunis, Tunisia, June 23-24, 2014. (2014), pp. 55-74.

NIEWIADOMSKI, A., PENCZEK, W., AND POLROLA, A. Abstract Planning
in PlanICS Ontology. An SMT-based Approach. Tech. Rep. 1027, ICS PAS,
2012.

NIEWIADOMSKI, A., PENCZEK, W., AND SKARUZ, J. SMT vs genetic algo-
rithms: Concrete planning in PlanICS framework. In Proceedings of CS€P,
Warsaw, Poland (2013).

30

[15]

[16]

[17]

[18]

[19]

NIEWIADOMSKI, A., PENCZEK, W., AND SKARUZ, J. A hybrid approach
to web service composition problem in the planics framework. In Mobile
Web Information Systems - 11th International Conference, MobiWIS 201/,
Barcelona, Spain, August 27-29, 2014. Proceedings (2014), pp. 17-28.

NIEWIADOMSKI, A., SKARUZ, J., PENCZEK, W., SZRETER, M., AND
JAROCKI, M. SMT versus genetic and openopt algorithms: Concrete planning
in the planics framework. Fundam. Inform. 135, 4 (2014), 451-466.

PokorNY, J. Nosql databases: A step to database scalability in web envi-
ronment. In Proceedings of the 13th International Conference on Information
Integration and Web-based Applications and Services (New York, NY, USA,
2011), iiWAS 11, ACM, pp. 278-283.

RoBiNSON, I., WEBBER, J., AND EIFREM, E. Graph Databases. O’Reilly
Media, Inc., 2013.

SHETTY, S., R, S. P., AND SiNHA, A. K. Article: A novel web service
composition and web service discovery based on map reduce algorithm. IJCA
Proceedings on International Conference on Information and Communication

Technologies ICICT, 4 (October 2014), 41-45. Full text available.

TALANTIKITE, H. N., A1ssani, D., AND BouDJLIDA, N. Semantic anno-
tations for web services discovery and composition. Computer Standards &
Interfaces 31, 6 (2009), 1108 — 1117.

Web Service Modelling Ontology D2v1.0. http://www.wsmo.org/2004/d2/
v1.0/, 2004.

31

	miniatura 1031
	1031_tekst

