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Summary

In the article, the Monte Carlo method (MCM) has been characterized from the point of view of 

road accident reconstruction. This method lies in making repeated calculations with the use of the 

same deterministic mathematical model, but with picking out the values of specific parameters on 

a pseudo-random basis from within predefined ranges of uncertainty. The calculation results have been 

presented in the form of a probability density function similar, in terms of its graphical representation, 

to a bell-shaped curve; such a form facilitates the statistical interpretation of data and the uncertainty 

analysis. In particular, it is possible to narrow the range of results by rejecting the extreme areas of 

low probability. Examples have been presented, focused on the issues concerning the calculation of 

pre-impact velocities, location of the collision point on the road, and kinematic analysis (referred to as 

“time-distance analysis”) of the pre-impact phase of a pedestrian accident. In the collision analysis, 

both the reconstruction methods (based on the momentum conservation principle and on Marquard 

models of calculating the post-impact velocities) and simulation techniques (simulation of the impact 

and the dynamics of motion in the PC-Crash program) were employed. It has been shown that the 

area of the largest concentration of the Monte Carlo simulation results is actually the area of most 

common responses of the deterministic model used for the data ranges adopted, but not necessarily 

a reflection of the truth. The crucial point is to develop an adequate mathematical model of the physical 

phenomenon.

Keywords: Monte Carlo method, collision, pedestrian accident, uncertainty

1. Introduction

An important problem inherent in the accident reconstruction lies in the relatively scant 

set of the data having been collected and the necessity to introduce many parameters 

with a wide range of tolerance of the parameter values, which raises the uncertainty 

of calculation results. Among various uncertainty analysis methods, comprehensively 

studied by, inter alia, Brach [3] or Guzek and Lozia [10], the one that deserves special 
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attention is the Monte Carlo method, which makes it possible to present the result in the 

form of probability density function for the parameter calculated.

The Monte Carlo method was invented by a Polish mathematician of the Lvov school, 

Stanisław Ulam, in cooperation with John von Neumann and Nicholas Metropolis when 

they worked on the Manhattan project [14]. Kost and Werner [12] as well as Wood and 

O'Riordain [27] presented advantages of analysing the uncertainty with the use of the 

Monte Carlo method. In the former study, attention was paid to the possibility of loading 

the input data in the form of various probability density functions and in the latter one, 

the authors highlighted the easier analysing of susceptibility of calculation results to the 

scatter of data and the possibility of reducing the number of equations describing all the 

circumstances by verifying some additional criteria related to partial problems. Bartlett 

[1] described methods of carrying out Monte Carlo calculations with the use of the tools 

available in the MS Excel spreadsheet program. Kimbrough [11] considered the possibility 

of using a Monte Carlo simulation for analysing the likelihood ratio of two opposing versions 

of the pre-accident situation. Fleck and Daily [7] examined the sensitivity of the Monte 

Carlo method in the reconstruction of a vehicle collision.

The Monte Carlo method lies in making repeated calculations with the use of the same 

deterministic mathematical model, but with picking out every time the values of specific 

parameters on a pseudo-random basis from within predefined ranges of uncertainty. At 

this method, an assumption is made that the input data are statistically independent; 

simultaneously, the probability density functions of the data must be known or assumed 

a priori [1, 7]. The procedure is cyclically repeated until the result reaches a form at which 

its probability density function becomes close to a bell-shaped curve, because this will 

enable further processing of the results with statistical methods.

In the PC-Crash road accident simulation program, the Monte Carlo method can be used for 

searching for the optimum parameters of vehicle motion just before the impact and/or for 

a collision model by varying any of the parameters that characterize the vehicles involved 

and/or the controlling of the vehicles in the pre-impact motion [17].

In the article, the issues have been addressed that concern the calculation of vehicle 

collision parameters and the kinematic analysis (referred to as “time-distance analysis”) 

of the pre-impact phase of a pedestrian accident, where the Monte Carlo method was 

employed. For this method to be more easily understood and for its practical advantages 

in the reconstruction of road accidents to be highlighted, a few examples have been 

shown. For a collision of vehicles, three examples have been presented with a model 

using the momentum conservation principle and Marquard’s methods of calculation of 

the separation velocities (i.e. the vehicle velocities just after the impact) in the accident-

reconstruction approach; this has been supplemented with one example based on the 

simulation of a collision and post-impact motion. The calculations were made with the use 

of a computer program (Marlo.exe) developed by the author and the PC-Crash simulation 

program. A more in-depth study on the reliability of the reconstruction of a road accident, 

where the uncertainty of calculations is one of the important factors, was presented 

in publication [22].
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2. Example 1: Introduction into the method

Let us consider a simple example, where the Monte Carlo method will be used to calculate 

the initial vehicle velocity. What is known is the length s = 20 m of the skid marks left by 

a vehicle braking on a horizontal dry and clean asphalt road surface. The average value 

of the coefficient of friction has been assumed as μ = 0.8, according to literature tables. 

Based on a formula:

where g = 9.81 m/s2 – acceleration of gravity, the vehicle velocity at the beginning of the 

skid marks is to be calculated, inclusive of the uncertainty of the result. The values of 

uncertainty of the input data have been assumed as Δs = ±0.9 m for the length measured 

and Δμ = ±0.06 for the coefficient of friction. The maximum and root-mean-square (rms) 

uncertainty values (see e.g. [3, 10]) are given by the following formulas:

where:

Having substituted the numerical input data and having made the calculations, we obtain  

v0 ± Δvmax = 17.7 ± 1,1 m/s and v0 ± Δvsqrt = 17.7 ± 0.78 m/s.

Every velocity value within the ranges v0 ± Δvmax or v0 ± Δvsqrt is equally likely to occur, i.e. 

the probability distribution is uniform and the corresponding probability density function 

is given by a formula

where Δv represents either Δvmax or Δvsqr. These distributions have been shown in Fig. 1.

A Monte Carlo simulation was also carried out, with calculations to formula (1) being 

repeated 20 000 times for uniform distributions of data within the ranges of s±Δs and 

μ±Δμ. The distribution of results in the form of a bell-shaped curve has been marked in 

blue in the graph in Fig. 1. Then, a similar simulation was carried out, but with the data being 

sampled at random according to the normal distributions for:

σμ=Δμ/3 =0.02 – standard deviation of the coefficient offriction;

σs=Δs/3=0.3 m – standard deviation of the length measured.

The v calculation results formed a pattern very close to normal distribution with parameters 

v0 = 17.7 m/s and σv = 0.36 m/s (black curve in the graph). The theoretical normal distribution 
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Fig. 1. Comparison of probability density functions

At the reconstruction of a specific case for forensic investigation purposes with the use of 

the Monte Carlo method, it is highly recommended to adopt data with assuming their uniform 

distribution. Let it be illustrated by the example where the pedestrian velocity is defined by 

a witness e.g. by the words “he walked at a normal pace”. Although the research on pedestrian 

movement gives results distributed in accordance with the Gaussian curve (i.e. normal 

distribution curve), nobody knows how accurate the witness’s assessment was in a specific 

individual case; therefore, an assumption should be made that every value from within the 

range of “normal walking pace” as specified in relevant tables is equally likely to occur.

3. Pre-impact velocities: a model used for accident 

reconstruction calculations

At the accident reconstruction calculations of collision parameters, the post-impact motion of 

the vehicles involved is examined at first; only then, the pre-impact velocities are calculated 

based on the momentum and angular momentum theorems (i.e. in accordance with the 

“classical collision model”) or on the momentum and energy conservation laws. For the 

analysis to be simplified, an example has been chosen where the momentum conservation 

law would be sufficient for solving the problem. In the vector notation, this law has the form: 

for such parameters is slightly shifted leftwards (Pearson product-moment correlation 

coefficient R2 = 0.983) and it has been represented by the black dashed curve. In each 

case, the expected value v0 is identical; the same applies to the span of results, except 

for the span related to Δvsqr). However, the Monte Carlo method made it possible to narrow 

the range of the most likely results. In the case of Δvsqr, the span of results covered 

approximately the range v0±2σv, which translates in practice into cutting off the rarest 

extreme results.
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Fig. 2. Types of central collisions: a) – oblique collision; b) – head-on collision

Fig. 3. Schematic drawing for the analysis of a two-vehicle collision

where: i=1.2 – index representing the number of a specific vehicle; mi – mass of the vehicle; 

v'ISi,C – velocity vector of the centre of vehicle mass Si at the instant of vehicle separation; 

vISi,C – velocity vector of the centre of vehicle mass Si at the instant just before the impact.

This law is a special case of the momentum theorem and may be applied to the central 

oblique collision (illustrated in Fig. 2a), where the pre-impact velocity directions should be 

far from being parallel for the dividing by zero in formulas (8) and (9) to be avoided.

In the case of strongly eccentric collisions, the failure of considering the angular momentum 

theorem may lead to major errors (see sub-item 3.2). In such a situation, the full classical 

collision model must be used, inclusive of the conditions related to the coefficient 

of restitution and friction in the tangential plane of the vehicles involved in the collision.

The motor vehicles in their impact and final (rest) positions have been shown in Fig. 3.

In the analysis, the notation as shown below has been adopted. Firstly, a symbol without 

an additional superscript (e.g. vi) relates to the pre-impact state; the sign “prime” (as in 
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e.g. vi') has the meaning that the symbol relates to the instant of separation; and the sign 

“double prime” (as in e.g. vi'') shows that the symbol relates to the final position. Moreover:

{I} – global inertial coordinate system with its origin being placed at point I;

{Ni} –  local coordinate system with its origin being placed in the middle of the front 

wheel axis of the ith vehicle Ni, parallel to the {Si} coordinate system with its origin 

being placed at the centre of vehicle mass Si;

Izi
 –  vehicle’s moment of inertia in relation to the vertical axis going through the centre 

of mass Si; 

Li,  − vehicle wheelbase;

rNi Si, Ni
 −  position of the centre of vehicle mass in relation to the {Ni} system, i.e. the vector 

extending from Ni to Si expressed in the {Ni} system;

rINi,Ni
 –  vector extending from I to Ni in the final position of the vehicle, in relation to the 

{Ni} system;,

ψi − instantaneous yaw angle in relation to the {I} system;

Δψi − total vehicle yaw angle in the post-impact motion;

 – angular velocity of vehicle yaw;

ϑi −  angle of the velocity vector of the centre of vehicle mass, measured in relation to 

the {I} system as shown in Fig. 3;

δi – angle of vehicle 2 in relation to vehicle 1 just before the impact;

vi min − minimum pre-impact velocity;

vi max − maximum pre-impact velocity;

μi − tyre-to-road friction oefficient;

fi −  coefficient of resistance to post-impact motion from 0 for all the wheels freely 

rolling to 1 for all the wheels locked without rolling

EESi −  Energy-Equivalent Speed, i.e. the vehicle velocity equivalent to the energy of 

plastic deformation of the vehicle;

ϱi −  angle of vector rS'i S i'',I,i.e. of the vector extending from point S'i to point S''i measured 

from the xI axis of the {I} system.

Assumptions:

–  The impact velocity vectors lay on the longitudinal vehicle centrelines and their sense 

was such that they pointed towards the vehicle front (ϑi=ψi).

–  The model is applicable to passenger cars or similar vehicles whose motion can 

be classified as planar.

– Pre-impact angular velocities of the vehicles were ω1=ω2=0.

– The road surface reactions acting on vehicle tyres were ignored.

– The collision had the nature of a rough collision.

– The pre-impact and separation positions of the vehicles were identical.

– The resistance to post-impact motion and the coefficient of friction were constant.
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Pre-impact velocities

For the assumptions made, the separation velocities v'i and ω'i can be calculated with 

employing the kinetic energy and friction work equivalency principle. Taking this as a basis 

and considering the bicycle vehicle model, Marquard [13] developed a method where he 

expressed the rotational resistance by means of correction factors. Below, the McHenry 

modification (known under the name of SPIN 2 [6]) was used, where the diversified resist-

ance at wheels has been taken into account with the use of factor fi (for more details see 

[19, 22, 26]). In this modification, the following formulas have been adopted:

The vector equation (5) may be expressed by two algebraic equations in the {I} system. 

After transformations, the pre-impact velocities are given by formulas:

Algorithm of the Monte Carlo method

The final (rest) vehicle positions are precisely known; therefore, the matrixes of rotation 

from the local coordinate systems at the final positions {Ni} to the inertial system {I} (see 

(10)) may be calculated only once before starting the Monte Carlo simulation procedure.

A single cycle of the calculation procedure is carried out pursuant to the algorithm as 

specified below.

1.  Input data: picking out a value of each parameter on a pseudo-random basis from with-

in the predefined ranges of uncertainty.

2. Angle of the velocity vector of vehicle 2 at the instant of impact:

3. Positions of the centre of mass in the coordinate systems related to the vehicles:
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4.  Matrixes of rotation from the local coordinate systems at the pre-impact positions {Ni} 

to the inertial system {I}

5. Position of vehicle 2 at the instant of impact in the inertial system {I}:

6. Separation velocities:

– centres of mass in the final positions

- centres of mass in the pre-impact positions

- distance between the centres of mass in the pre-impact position and the final position

- separation velocities according to McHenry formulas (6) and (7).

7.  Impact velocities, based on the momentum conservation law, according to formulas 

(8) and (9).

The cycle consisting of steps from 1 to 7 is repeated n times. The results that do not meet 

the criteria of “conditional sampling” are rejected (cf. [20]). Thus, by introducing e.g. the 

energy conservation law to the equations, it is made possible to reduce the influence 

of the problem of parallelism of the longitudinal vehicles’ centrelines at the instant just 

before the impact, inherent in the momentum conservation law (see the said denominator 

in formulas (8) and (9)). The conditional sampling usually results in asymmetry of the 

probability density function.

3.1. Example 2: Collision of two motorcars

In this example, data obtained from crash test No. 7 documented in [4] were used; hence, 

the results will simultaneously be usable for verification purposes.

Input data

A sketch of the accident scene has been shown in Fig. 4 and the numerical data inclusive of 

the uncertainty ranges for the parameters whose values are difficult for being ascertained 

in the accident reconstruction practice have been specified in Table 1. At the collision 
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Fig. 4. Accident scene [4]

Table 1. Data for test No. 7 in [4]

Parameter
1. Ford 

Taunus 1300

2. Opel

Commodore GS

Distance between centre of mass and front axle [m] 1.14 1.24

Wheelbase Li [m] 2.58 2.672

Coefficient of friction μi 0.7±0.1 0.7±0.1

Coefficient of resistance to the post-impact motion fi 0.7±0.2 0.6±0.2

Mass mi [kg] 990±30 1220±30

Moment of inertia Izi [kgm2] 1387±200 1877±200

Total vehicle yaw angle in the post-impact motion Δψi [°] 42° −13°

Final velocity vi'' [km/h] 0 0

Angle of the pre-impact velocity vector ϑi in {I} [°] 0.0±2.0 90.0±2.0

Angle of the separation velocity vector ϑi' in {I} [°] 1.7±3.0 0.6±3.0

Calculations

In result of the Monte Carlo simulation, probability density functions of velocities 

f(vi),i = 1,2 were obtained; they have been represented in Fig. 5 by solid lines. The expected 

(nominal) values are v1 = 86.6 km/h and v2 = 1.2 km/h. For comparison, these values actually 

were v1
(r) =87.7 km/h i v2

(r) = 0 km/h.

under consideration, the eccentricity was very small; therefore, the use of the momentum 

conservation principle alone may be considered acceptable.
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Fig. 5. Probability density function of the pre-impact velocity: a) for vehicle 1; b) for vehicle 2

Fig. 6. Results of the calculation of pre-impact velocities v1 and v2 by the Monte Carlo method as: 

a) bivariate probability density function, b) bivariate cumulative distribution function

The presentation of results in the form of univariate graphs entails a risk of selective and 

uncorrelated picking out of any of the values e.g. to convince the court of the rightness of 

one’s position during legal proceedings. Therefore, a better solution from the formal point 

of view is the presentation in the form of bivariate probability density functions f(v1, v2) or 

cumulative distribution functions d(v1, v2), where the velocities v1 and v2 depend on each 

other (as in Fig. 6). The probability that the impact velocities fall within ranges v1  <a,b> 
and v2  <c,d> can be calculated from a formula

but it can be directly read from Fig. 6b that e.g.
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Fig. 7. Accident scene (test No. 3 [16])

3.2. Example 3: Collision of a motorcycle with a passenger car

Now let us look into the problem of a strongly eccentric impact of a motorcycle against 

a motorcar, taking as an example the crash test No. 3 described in [16], with limiting the 

range of the input data to those usually available to a forensic expert when undertaking 

an accident reconstruction task. The accident scene has been schematically presented 

in Fig. 7 and the other data have been given in Table 2. The directions of the separation 

velocities together with the ranges of uncertainty have been shown in Fig. 8.

Table 2. Data for test No. 3 in [16]

Parameter

1. Motorcycle 

Yamaha XS 

400

2. Motorcar 

Mazda 323 LX

Wheelbase Li [m] 1.38 2.5

Coefficient of friction in the post-impact motion μi 0.40±0.10 0.75±0.10

Coefficient of resistance to the post-impact motion fi 0.75±0.25 0.80±0.20

Mass mi [kg]
mY = 

182±30 *
996±30

Moment of inertia Izi [kgm2] 88±10 1273±200

Total vehicle yaw angle in the post-impact motion Δψi [°] 180° −93°

Final velocity vi'' [km/h] 0 0

Angle of the pre-impact velocity vector ϑi in {I} [°] 0.0±0.5 90.0±0.5

Angle of the separation velocity vector ϑi' in {I} [°] 8.0±3.0 5.0±4.0

*mY – mass of the motorcycle without the dummy
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Fig. 8. Directions of the separation velocities adopted at the calculations

The mass of the test dummy representing the motorcyclist was m0 = 82 kg. After the 

motorcycle impact against the car, the dummy flew over the car bonnet without touching 

it; therefore, based on Priester’s suggestions [18], a single combined value of the reduced 

mass of the motorcycle together with the motorcyclist, equal to m1≈mY+0.3·m0 = 207 kg 

(±Δm1 = 30 kg) was assumed for the calculations where the momentum conservation 

principle was employed.

In the Monte Carlo simulation carried out, the algorithm of reconstruction calculations was 

identical to that used in example 1. The results were obtained in the form of a bivariate 

probability density function represented in Fig. 9. The pre-impact velocities fell within 

ranges v1 = 131÷183 km/h and v2 = 1.3÷7.1 km/h; their expected (nominal) values were v1 

= 162 km/h and v2 = 4 km/h (note: the probability distribution is asymmetrical; therefore, 

the expected values are not the mean values from the whole ranges of uncertainty of the 

results). On the other hand, should the calculations be made only once for the nominal 

values then the results together with the rms uncertainty values would bev1 = 162±24 km/h 

and v2 = 4±2 km/h. Hence, a typical conclusion arises that “the Monte Carlo simulation has 

made it possible to narrow the range of real results by rejecting the extreme areas of low 

probability”. This time, however, such a conclusion would be exceedingly hasty, because 

the measured actual velocities were v1
(r) = 122 km/h and v2

(r) = 0 km/h, i.e. the error in the 

expected value Δv1=100·(v1-v1
(r) )/v1

(r) was as great as 33%. 

In spite of the very suggestive form of the probability density function, the result of the 

Monte Carlo simulation is far from reality. The main reason for this fact lies in inadequacy of 

the collision model adopted, i.e. in the application of the momentum conservation rule to a 

strongly eccentric impact. As it can be seen, the Monte Carlo method taken alone cannot 

improve the imperfections of a deterministic model; instead, it may only help in obtaining 

a lucid form of the result for all combinations of data from among the uncertainty ranges 

adopted.
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Fig. 9. Probability density function of the pre-impact velocity values obtained from the Monte Carlo simulation 

(according to the momentum conservation principle)

In this situation, the complete classical collision theory (e.g. the Kudlich-Slibar model, see 

[26]) must be employed. The velocity values obtained from the calculations corrected as 

appropriate would be v1 = 123±17 km/h and v2 = 9±3 km/h. Thus, the v1 velocity value would 

fall to the realistic range. Note: for low velocity values (such as v2) confronted with very high 

velocities (such as v1), no great importance should be attached to the numerical values 

ofv2; instead, an assumption should be made that vehicle 2 moved with an unspecified 

low velocity close to 0 or it was at a standstill.

4. Example 4: Searching for the collision point on the road

Let us address the intriguing problem of analytical determining of the point of collision 

between two vehicles in the case that any marks that would unequivocally indicate the 

location of this point were not found on the road surface. In this analysis, the impact test 

No. 7 [4], dealt with in sub-item 3.2 of this article, will be used again as an example, but 

now this case will be examined as if only the vehicle deformations, final (rest) positions 

of the vehicles, and the fact that the vehicles were perpendicular to each other at the 

moment of impact, were known. The task is to determine analytically the impact position 

of the vehicles in relation to the road surface. A sketch of the accident scene has been 

shown in Fig. 10 (cf. Fig. 4).
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Fig. 10. Accident scene [4]; the location of collision point C, defining the collision position of vehicles relative 

to the road, is to be found

Let us use a mathematical model similar to that applied to the work described in publication 

[24]. The collision point is a selected point C situated on the tangential plane of the vehicles 

brought to contact with each other in accordance with the vehicle deformations. Since the 

position of this point in relation to both of the vehicles is constant, the calculation of its 

coordinates will in effect be the determining of the collision point.

The shortened algorithm of the Monte Carlo simulation will include the following steps 

repeated n times:

1.  Pick out a value of each input parameter on a pseudo-random basis from within 

the appropriate predefined range of uncertainty. Note: for the separation velocities 

vi' to be calculated in step 2, the pre-impact velocities vi must be known; therefore, 

let us assume that they have been recorded by an EDR (Event Data Recorder) as 

vi = 87.8±0.5 km/h and v2 = 0.0±0.5 km/h (without these data, further calculations 

would not make any sense).

2.  Calculate the separation velocities vi' of both vehicles with the use of the McHenry 

model.

3. Calculate the distances travelled by the centres of mass in the post-impact motion.

4. Calculate the coordinates of the centres of mass at the instant of impact.

5. Calculate the coordinates of the collision point C.

6. Archive the results.

7. Jump to step 1.

A block diagram of the calculation procedure has been shown in Fig. 11.

The results obtained for n = 20 000 have been presented in the form of a bivariate probability 

density function in Fig. 12. In part a) of this figure, this function has been shown as a horizontal 

projection against the background of the actual configuration of the vehicles at the instant 

of impact (the vehicle contours have been marked by solid lines) and the actual collision 

point. The highest concentration of results was obtained for point C with coordinates 
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Fig. 11. The algorithm of the Monte Carlo simulation

C = [5.51 m; 3.77 m]; the vehicle contours corresponding to this point have been marked by 

dashed lines. The total span of the distribution was δx= 3.31 m and δy= 0.96 m.

The calculations made in accordance with the complete classical collision theory (i.e. the 

Kudlich-Slibar model) yielded results with a similar uncertainty class; therefore, they do 

not have to be quoted here.

Fig. 12. Probability density function of the collision point location on the road, obtained from the Monte Carlo 

simulation (according to the momentum conservation principle and the McHenry method): a) horizontal 

projection; b) 3D view
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The area with the highest concentration of results is shifted by about 0.39 m to the right from 

the actual collision point C(r). On the other hand, the probability distributions make it possible to 

narrow the area of the most likely results to a considerable degree. For comparison, in the case 

of the calculations being made only once, the maximum coordinate uncertainty values would 

be ΔxC≈δx/2 and ΔyC≈δy/2 and any result falling within the ranges (xC-ΔxC )<xC<(xC+ΔxC) and 

(yC-ΔyC )<yC<(yC+ΔyC) should be considered as being equally likely to occur.

The coordinate values to be found are very susceptible to the pre-impact velocities and 

the directions of the pre-impact and post-impact velocity vectors, i.e. to the data that are 

most difficult to be determined. Therefore, results of the Monte Carlo simulations should be 

treated with great caution, with remembering that the area of the highest concentration 

of results is only the region of most frequently occurring results of calculations carried 

out for the specific input data assumed and for the mathematical models adopted. If an 

accuracy of 0.10–0.50 m is desired (as it is in the case of a problem of crossing the car-

riageway centreline by any of the vehicles involved), then the uncertainty of calculations 

of the order of several meters completely disqualifies the method.

When a real case is examined, it will be recommendable to make comparisons between 

results obtained with the use of different collision models and post-impact motion models 

(cf. [21]) as well as to carry out verifying dynamic simulations, although fully reliable solu-

tions should not be expected even in spite of such precautions having been taken. 

5. Example 5: Simulation of a collision and the post-impact 

motion

Let us get back to the problem of calculating pre-impact velocities, raised in sub-item 3.1. 

This time, the task will be solved with the use of the PC-Crash program, by calculating the 

separation parameters based on pre-impact parameters and by simulation of the post-

impact motion of the vehicles. The set of pre-impact input data will be identified by means 

of the Monte Carlo simulation.

At this analysis, the Kudlich-Slibar collision model and a model of vehicle motion dynamics 

with 10 degrees of freedom were used. The solution searching process was automated, 

with the Monte Carlo method and an optimizing tool [15] being used. The goal was to find 

such a set of input data for which the quality function, i.e. the weighted relative error de-

fined by formula (19), would reach its minimum value Qmin

where: qi – relative difference between the actual value of the ith parameter and the cor-

responding value obtained from the simulation; wi – weight of the ith parameter.

The set of the basic input data used was identical to that presented in sub-item 3.1, but it 

was extended by adding some data that supplemented the parametrization of the model of 

motion dynamics. The calculation results in the form of a set of points defined by errors Q 
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and corresponding impact velocities, obtained from 4 000 steps, have been presented in 

Fig. 13. At an assumption that the error Q should not exceed 10 %, the result obtained from 48 

steps of 4 000 steps in total was v1 = 74–86 km/h and v2 = 0–8 km/h. The best fit between 

the virtual and actual final positions (Q = 2 %) was achieved for v1 = 79 km/h and v2 = 0 km/h.

Fig. 13. Quality function values vs. pre-impact velocities obtained at the Monte Carlo simulation

The fact that the expected value of the velocity of vehicle 1 determined from classical ac-

cident reconstruction calculations (86.8 km/h, see sub-item 3.1) was closer to the actual 

value (87.7 km/h) than that calculated with the use of the PC-Crash program (79.0 km/h) 

was pure chance. The simulations, which are virtual experiments, offer an incomparably 

more comprehensive view of the influence of different parameters than the simple mo-

mentum equations and McHenry formulas do.

6. Example 6: Pedestrian accident

In this example, calculations will be carried out to analyse the kinematics of the pre-col-

lision phase of an accident where a pedestrian was struck by a motor vehicle. The main 

goal is to answer the question whether driver’s reaction to the beginning of the hazardous 

situation, i.e. to the fact that the pedestrian entered the carriageway, was delayed or not. 

In mathematical terms, this problem will be expressed as follows:

The reaction delay τ is the time interval between the beginning of a hazardous situation 

(i.e. the moment when an average, sufficiently good, and fit driver should have begun to 

react – e.g. the fact that a pedestrian entered the roadway) and the beginning of the reac-

tion of the real driver involved in the accident. In other words, this is the time of driver’s 

reaction delay in relation to the required beginning of the reaction. This parameter has 

been defined by a formula
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where: tp – emergency duration time (sometimes referred to in English as “time-to-collision” 

or “TTC”), i.e. the time that elapsed from objective beginning of the hazardous situation 

from the driver’s point of view (e.g. the instant when a pedestrian entered the carriageway) 

and the collision; tr − time of reaction of an average, sufficiently good, and fit driver; 

tn − braking deceleration rise time; th1 − braking time before the collision.

One of the key parameters that are decisive for the uncertainty of analysis results is the 

driver’s reaction time, which depends on many factors, such as e.g. degree of complexity 

of the road situation, emergency duration time (TTC), time of the day (daytime or night-

time), element of surprise, or “information noise” in the road environment [8, 9].

The notation "τ>0" means that the driver’s decision about applying brakes was delayed 

should be interpreted as a statement that the driver reacted immediately.

When appropriate transformations are made (see [25]), the following formula may be derived:

where: dp − distance walked by the pedestrian during the emergency duration time, i.e. from 

entering the carriageway to the collision; vp − pedestrian velocity; sh1 − braking distance 

before the collision; sh2 − braking distance after the collision; ah − vehicle deceleration 

during the braking; mp – pedestrian mass; ms – vehicle mass.

Table 3. Data adopted for the calculations

Parameter Value

ah [m/s2] (0.75±0.04) g

dp [m] 3.8±0.2

an = a_h/s [m/s2] (0.38±0.02) g

tn [s] 0.20±0.02

sh1 [m] 12.00±0.10

sh2 [m] 4.00±0.05

tr [s] 0.85±0.15

mp [kg] 68±2

ms [kg] 1200±20

vp1 [m/s] according to pedestrian’s version

(the velocity of a pedestrian, a male 29 years old, walking at a slow pace, 

based on data taken from the whole range determined by the compilation 

of research results published by various authors, see [26])

1.13±0.16

vp2 [m/s] according to driver’s version

(the velocity of a pedestrian running, according to the same sources)
3.22±0.78



Monte Carlo method in analysis of road accidents versus interpretation of calculation results 101

The data adopted for the calculations inclusive of their uncertainty ranges have been 

brought together in Table 3 and presented in Fig. 14. A serious difficulty arose from the fact 

that two completely different versions existed that described the velocity of motion of the 

pedestrian (a male 29 years old): the pedestrian claimed to “be walking at a slow pace” 

while the driver reported that the pedestrian “was running across the road”.

Fig. 14. Accident scene (all dimensions in [m])

Instead of making separate calculations for version 1 and version 2 of the pedestrian 

velocity, one common velocity range, appropriately widened, was adopted, which covered 

all the possible velocity values, from the minimum for the pedestrian walking at a slow pace 

to the maximum for the pedestrian running (cf. [5, 26]), in order to simplify the interpretation 

of analysis results and to reduce the labour input required. In numerical terms, the velocity 

range adopted was as specified below:

The reaction delay τ was calculated in three different ways, i.e. analytically, graphically, and 

with the use of the Monte Carlo method. 

Analytical method

According to the analytical method, the nominal value τ with the maximum uncertainty 

value Δτmax and the root mean square value Δτsqr were:

Since the results covered both positive and negative values (“delayed driver’s reaction” 

and “immediate driver’s reaction”, respectively), the issue of delay in driver’s reaction 

remained unsolved. In addition to this, any value of driver’s reaction delay within the ranges  

τ±Δτmax or τ±Δτsqr is equally likely to occur.
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Graphical method

The results obtained from the graphical method have been presented in Fig. 15. In this 

case, too, any value of driver’s reaction delay within the range −1.0 < τ [s] < 3.7 is equally 

likely to occur.

Fig. 15. Time-distance relationship with separation of two versions of pedestrian’s velocity

Monte Carlo method

A Monte Carlo simulation was carried out with calculations to formula (21) being repeated 

40 000 times, but with modifying every time the values of each of the input parameters on 

a pseudo-random basis within the predefined ranges of uncertainty. Uniform distributions of 

all the input data were adopted to avoid the blame for arbitrary rejection of marginal areas.

The calculation results in the form of a probability density function represented by a strongly 

asymmetrical bell-shaped curve have been presented in Fig. 16. The expected value of the 

reaction delay (i.e. the one for which the highest concentration of results was recorded) is 

identical to that obtained from the analytical method, i.e. τ = –0.53 s; however, when the 

distribution is taken into account as a whole, the results can be seen to fall within the range 

–1.3 < τ [s] < 2.1, which means that they still do not offer a solution for this issue.

Comparison and discussion of the results

For comparison, the uniform probability density functions determined at the analytical 

and graphical methods (according to formula (4), with substituting τ for v) have been 

additionally plotted in Fig. 16.
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Fig. 16. Comparison of probability density functions of reaction delay τ obtained when the analytic, graphic, 

and Monte Carlo methods were used

The uncertainty ranges determined with the use of the graphical and Monte Carlo methods 

practically coincide with each other and, in the nature of things, cover the whole span 

of the results possible. However, a good point of the Monte Carlo method is the fact that 

it additionally makes it possible to prepare the results in a form suitable for statistical 

processing.

In the case of the analytical method, the uncertainty range is somewhat narrower and 

shifted towards the peak of the probability density curve. This effect is caused by the 

linearization of nonlinear equation (21) around the nominal values during the calculation of 

susceptibility coefficients (i.e. the partial derivatives necessary for calculating the values 

of uncertainty Δτmax and Δτsqr of results) and by the use of high values of uncertainty of the 

data, especially the pedestrian velocity.

The symmetry of the probability density function at the Monte Carlo method will improve 

with narrowing the range of the possible pedestrian velocity values; therefore, if in 

a specific case it is ascertained that the pedestrian walked at e.g. a fast pace then this 

effect will disappear and the interpretation troubles will be avoided.

It is easy to notice that the analytical calculations, covering merely the ranges τ±Δτmax or 

τ±Δτsqr, will omit some solutions (on the right side of the graphs in Fig. 16) while allowing 

others, although being redundant (on the left side of the graphs). The other two methods 

are free from this drawback.

In the case of wide scatter of the input data, the introduction of a well-thought-out 

mathematical criterion will make it possible to formulate lucid conclusions, which will 
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be identical in qualitative terms regardless of the calculation method used. Such a criterion 

will reduce the necessity of repeating the calculations for various, hastily created, “sub-

versions” of the course of the accident. An example of such a criterion has been presented 

in publication [25].

7. Conclusions

1.  The Monte Carlo method lies in making repeated calculations with the use of the same 

deterministic mathematical model, but with picking out every time the values of specific 

parameters on a pseudo-random basis from within predefined ranges of uncertainty, 

with these input data being configured in almost all the possible combinations. Thanks 

to this, the results are obtained in the form of a probability density function similar, in 

terms of its graphical representation, to a bell-shaped curve.

2.  The Monte Carlo method cannot improve the imperfections of a deterministic model. 

Instead, it is a tool making it possible to obtain results in a form facilitating the statistical 

interpretation of data and the uncertainty analysis. Thanks to this, it is possible to 

narrow the range of results to realistic values by rejecting the extreme areas of low 

probability.

3.  When interpreting results of a Monte Carlo simulation, one should remember that the 

area of the highest concentration of results is actually the region of most frequently 

occurring results of calculations carried out for the specific input data assumed and 

for the deterministic models adopted, but not necessarily a reflection of the truth. 

An issue of fundamental importance is the developing of an adequate mathematical 

model, because an incorrect model will produce erroneous results but presented 

in a suggestive form.

4.  Calculations according to simple formulas can be easily made with the use of 

spreadsheet programs (e.g. MS Excel).

5.  At the reconstruction of a specific road accident for forensic investigation purposes, it 

is recommended to adopt uniform distributions of most of the data, because nobody 

can assure that a specific parameter in a specific case did not happen to assume its 

extreme value. As an example: although results of field measurements of distances 

have, in statistical terms, a normal distribution [2], nobody knows how carefully a police 

officer measured a specific distance. On the other hand, the use of actual distributions 

of input data in statistical and generalized applications is strongly advisable.
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