Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper analyses the performance of avalanche barrier infrared detectors based on the bulk InAsSb ternary compound of AIII-BV materials, lattice-matched to the GaSb substrate for a long-wavelength range operating at thermoelectric cooling conditions. A ternary Al₀.₂As₀.₈Sb barrier was assumed. Particular attention was paid to the influence of avalanche multiplication layer parameters on the device current-voltage characteristics and current gain. Numerical simulations were performed using a SimuApsys software for the npBp InAsSb detector operating at the temperature achieved by a two-stage thermoelectric cooler (TE), T = 230 K. Based on the analysis of the literature data of the avalanche ionisation coefficient and the density of the band-to-band tunnelling currents, the conditions in which the Zener effect does not reduce the multiplication process were determined. The highest gain can be achieved with a low level of multiplication layer doping and a lower molar composition of antimony compared to the absorber composition (larger band gap energy). The gain also increases with the multiplication of layer thickness. The paper discusses the design of the long-wavelength avalanche detectors based on InAsSb with an optimised multiplication process.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
art. no. e155676
Opis fizyczny
Bibliogr. 23 poz., rys., wykr., tab.
Twórcy
autor
- Institute of Applied Physics, Military University of Technology, ul. gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
autor
- Institute of Applied Physics, Military University of Technology, ul. gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
autor
- Institute of Applied Physics, Military University of Technology, ul. gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
Bibliografia
- [1] Rogalski, A. InAs1-xSbx infrared detectors. Prog. Quantum Electr. 13, 191-231 (1989). https://doi.org/10.1016/0079-6727(89)90003-7.
- [2] Coderre, W. M. & Woolley, J. C. Electrical Properties of Inasxsb1-X Alloys. (Defense Technical Information Center, 1968).
- [3] Rogalski, A. Infrared and Terahertz Detectors, 3rd ed. (CRC-Press Taylor Francis Group, 2019). https://doi.org/10.1201/b21951.
- [4] Abautret, J. et al. Characterization of midwave infrared InSb avalanche photodiode. J. Appl. Phys. 117, 244502 (2015). https://doi.org/10.1063/1.4922977.
- [5] Craig, A., Marshall, A. R. J., Tian, Z. B., Krishna, S. & Krier, A. Mid-infrared InAs0.79Sb0.21-based nBn photodetectors with Al0.9Ga0.2As0.1Sb0.9 barrier layers, and comparisons with InAs0.87Sb0.13 pin diodes, both grown on GaAs using interfacial misfit arrays. Appl. Phys. Lett. 103, 253502 (2013). https://doi.org/10.1063/1.4844615.
- [6] Maimon, S. & Wicks, G. W. nBn detector, an infrared detector with reduced dark current and higher operating temperature. Appl. Phys. Lett. 89, 151109 (2006). https://doi.org/10.1063/1.2360235.
- [7] Soibel, A. et al. Room temperature performance of mid-wavelength infrared InAsSb nBn detectors. Appl. Phys. Lett. 105, 023512 (2014). https://doi.org/10.1063/1.4890465.
- [8] Ting, D. Z. et al. High-Temperature characteristics of an InAsSb/AlAsSb n+Bn detector. J. Electron. Mater. 45, 4680-4685 (2016). https://doi.org/10.1007/s11664-016-4633-z.
- [9] Baril, N. et al. Bulk InAsxSb1-x nBn photodetectors with greater than 5 μm cutoff on GaSb. Appl. Phys. Lett. 109, 122104 (2016). https://doi.org/10.1063/1.4963069.
- [10] Shaveisi, M. & Aliparast, P. Design and modeling of high‑performance mid‑wave infrared InAsSb‑based nBn photodetector using barrier band engineering approaches. Front. Optoelectron. 16, 5 (2023). https://doi.org/10.1007/s12200-023-00060-9.
- [11] Martyniuk, P. et al. Infrared avalanche photodiodes from bulk to 2D materials. Light Sci. Appl. 12, 212 (2023). https://doi.org/10.1038/s41377-023-01259-3.
- [12] Marshall, A. R. J., David, J. P. R. & Tan, C. H. Impact ionisation in InAs electron avalanche photodiode. IEEE Trans. Electron. Device 57, 2631-38 (2010). https://doi.org/10.1109/TED.2010.2058330.
- [13] Maurya, P. K., Agarwal, H., Singh, A. & Chakrabarti, P. InAs/InAsSb avalanche photodiode (APD) for applications in long-wavelength infrared region. Optoelectron. Lett. 4, 342-346 (2008). https://doi.org/10.1007/s11801-008-8068-5.
- [14] David, J. P. R. & Tan, C. H. Material consideration for avalanche photodiodes. IEEE J. Sel. Top. Quantum Electron. 14, 998–1009 (2008). https://doi.org/10.1109/JSTQE.2008.918313.
- [15] Rouvie, A. et al. High gain and band width product over 140 GHz planar junction AlInAs avalanche photodiodes. IEEE Photon. Technol. Lett. 20, 455-57 (2008). https://doi.org/10.1109/LPT.2008.918229.
- [16] Rogalski, A., Martyniuk, P., Kopytko, M., Madejczyk, P. & Krishna, S. InAsSb-Based infrared photodetectors: Thirty years later on. Sensors 20, 7047 (2020). https://doi.org/10.3390/s20247047.
- [17] Lin, Y. et al. Development of bulk InAsSb alloys and barrier heterostructures for long-wave infrared detectors J. Electron. Mater. 44, 3360-3366 (2015). https://doi.org/10.1007/s11664-015-3892-4.
- [18] Crosslight Software Inc. Crosslight Device Simulation Software - General Manual 2019 version (2019). https://www.simu8.net/crosslight/Crosslight_manual_2017-11-02.pdf.
- [19] Vurgaftman, I., Meyer, J. R. & Ram-Mohan, L. R. Band parameters for III–V compound semiconductors and their alloys. J. Appl. Phys. 89, 5815-5875 (2001). https://doi.org/10.1063/1.1368156.
- [20] Chynoweth, A. G. Ionization rates for electrons and holes in silicon. Phys. Rev. 109, 1537-1540 (1958). https://doi.org/10.1103/PhysRev.109.1537.
- [21] Tempel, S. et al. A comparative study of impact ionization and avalanche multiplication in InAs, HgCdTe, and InAlAs/InAsSb superlattice. Appl. Phys. Lett. 124, 131105 (2024). https://doi.org/10.1063/5.0189416.
- [22] Yuan, Y. et al. AlInAsSb impact ionization coefficients. IEEE Photonics Technol. Lett. 31, 315-318 (2019). https://doi.org/10.1109/LPT.2019.2894114.
- [23] Manyk, T., Sobieski, J., Matuszelański, K., Rutkowski, J. & Martyniuk. P. Investigation of HgCdTe avalanche photodiodes for HOT condition. Bull. Pol. Acad. Sci. Tech. Sci. 72, e149173 (2024). https://doi.org/10.24425/bpasts.2024.149173.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2e1877d0-ba0b-4d89-8f2d-e3b72256f976
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.