PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Models of the Heavy Metal Accumulation of the Multiple Grain Energy Cultures for Wasterwater Deposition on Oil-Polluted Degraded Soils

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The research was conducted on the territory of Nadvirna oil and gas district of South-Hvizdetsky oil field of Ivano-Frankivsk region during 2016-2020. The production activity at the research site was stopped 45 years ago. Energy crops the Miscanthus (Miscanthus giganteus) and switchgrass (Panicum virgatum) were planted and sown on model research plots with an estimated area of 25 m2 in triplicate. The miscanthus was planted manually according to the scheme 0.50 × 0.70 m. According to studies on the oil-contaminated soils, with the introduction of different sedimentation rates wastewater, the content of the Lead when growing the miscanthus increases with the introduction of SS 40 t/ha and N10P14K58 (option 6) and is 4.30 mg/kg of soil. However, when growing the switchgrass with the same fertilizer application, the Lead content is 3.97 mg/kg of soil, which is 0.33 mg/kg of soil less than growing the miscanthus. The concentration coefficients of the gross forms of the Lead vary in the range of 1.01–1.09 during the cultivation of the miscanthus. The concentration coefficient of the gross forms of the Cadmium varies in the range of 1.09–1.56, the maximum remains in the options for the introduction of the sewage sludge at a rate of 40 t/ha and N10P14K58. The concentration coefficients of the gross forms of the Lead for growing the switchgrass 20–40 t/ha (option 4–6) are equal to 1.02–1.15. The concentration coefficient of the gross forms of the Cadmium varies between 1.18 and 1.49.
Twórcy
  • National University of Life and Environmental Sciences of Ukraine, Heroiv Oborony 15, Kyiv, Ukraine
  • Ivano-Frankivsk National Technical University of Oil and Gas, Carpathian 15, 76000, Ivano-Frankivsk, Ukraine
Bibliografia
  • 1. Lopushniak V., Hrytsuliak H. 2020. Environmental soil conditions for entering sewage sludge under energy crops. Proceedings of the XXII International Scientific and Practical Conference/ International Trends in Science and Technology. Vol. 1. Warsaw. Poland. February 28, 57-60.
  • 2. Chen, B.-C.; Lai, H.-Y.; Juang, K.-W. 2012. Model evaluation of plant metal content and biomass yield for the phytoextraction of heavy metals by switchgrass. Ecotoxicol. Environ, 80, 393–400. DOI: 10.1016/j.ecoenv.2012.04.011
  • 3. Bouton, J.H. 2007. Molecular breeding of switchgrass for use as a biofuel crop. Curr. Opin. Genet. Dev. 17, 553-558. DOI: 10.1016/j.gde.2007.08.012
  • 4. Casler, M.D. 2012. Switchgrass Breeding, Genetics, and Genomics. In: A. Monti (ed.). Switchgrass, Green Energy and Technology. Springer-Verlag, London, pp. 29-53. DOI: 10.1007/978-1-4471-2903-5_2
  • 5. Cooperband, L.R., Stone, A.G., Fryda, M.R., Ravet, J.L. 2003. Relating compost measures of stability and maturity to plant growth. Comp. Sci. Util. 11, 113-124. https://doi.org/10.1080/1065657X.2003.10702118
  • 6. Bernal-Vicente, A., Ros, M., Tittarelli, F., Intrigliolo, F., Pascual, J.A. 2008. Citrus compost and its water extract for cultivation of melon plants in greenhouse nurseries. Evaluation of nutriactive and biocontrol effects. Bioresour. Technol. 99, 8722-8728. DOI: 10.1016/j.biortech.2008.04.019
  • 7. Desjardins, D., et al. 2018. Complementarity of three distinctive phytoremediation crops for multiple-trace element contaminated soil. Science of The Total Environment. 610-611, 1428-1438. DOI: 10.1016/j.scitotenv.2017.08.196
  • 8. Huang X, Luo D, Chen X, Wei L, Liu Y, Wu Q, Xiao T, Mai X, Liu G, Liu L.Int J Environ Res Public Health. 2019. Insights into Heavy Metals Leakage in Chelator-Induced Phytoextraction of Pb- and Tl-Contaminated Soil. Apr 12, 16(8), 1328. DOI: 10.3390/ijerph16081328.
  • 9. Elbersen, H.W., Christian, D.G., El Bassem, N., Bacher, W., Sauerbeck, G., Alexopoulou, E., Sharma, N., Piscioneri, I., de Visser, P., van der Berg, D. 2001. Switchgrass variety choice in Europe. Aspect Appl. Biol. 65, 21-28.
  • 10. Fike, J.H., Parrish, D.J., Wolf, D.D., Balasko, J.A., Green Jr., J.T., Rasnake, M., Reynolds, J.H. 2006. Switchgrass production for the upper southeastern USA: influence of cultivar and cutting frequency on biomass yields. Biomass Bioenerg. 30, 207-213.
  • 11. Moroz O.M., Hnatush S.O., Tarabas O.V., Bohoslavets C.I., Yavorska G.V., Borsukevych B.M. 2018. Sulfidogenic activity of sulfate and sulfur reducing bacteria under the influence of metal compounds. Biosysteams Diversity. 26(1). DOI: https://doi.org/10.15421/011739.
  • 12. Grigliatti, M., Giorgioni, M.E., Ciavatta, C. 2007. Compost-based growing media: influence on growth and nutrient use of bedding plants. Bioresour. Technol. 98, 3526-3534. DOI: 10.1016/j.biortech.2006.11.016
  • 13. Lemus, R., Brummer, E.C., Moore, K.J., Molstad, N.E., Lee Burras, C., Barker, M.F. 2002. Biomass yield and quality of 20 switchgrass populations in southern Iowa, USA. Biomass Bioenerg. 23, 433-442.
  • 14. Lewandowski, I., Scurlock, J.M.O., Lindvall, E., Christou, M. 2003. The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. Biomass Bioenerg. 25, 335-361. doi:10.1016/S0961-9534(03)00030-8
  • 15. Alexopoulou, E., Sharma, N., Papatheohari, Y., Christou, M., Piscioneri, I., Panoutsou, C., Pignatelli, V. 2008. Biomass yields for upland and lowland switchgrass varieties grown in the Mediterranean region. Biomass Bioenerg. 32, 926-933. https://doi.org/10.1016/j.biombioe.2008.01.015
  • 16. Manios, T. 2004. The composting potential of different organic solid wastes: experience from the island of Crete. Environ. Int. 29(8), 1079-1089. DOI: 10.1016/S0160-4120(03)00119-3
  • 17. Murphy, I.J.; Coats, J.R. 2011. The capacity of switchgrass (Panicum virgatum) to degrade atrazine in a phytoremediation setting. Environ. Toxicol. Chem. 30, 715–722. https://doi.org/10.1002/etc.437
  • 18. Monti, A., Venturi, P., Elbersen, H.W. 2001. Evaluation of the establishment of lowland and upland switchgrass(Panicum virgatum L.) varieties under different tillage and seedbed conditions in northern Italy. Soil Till. Res. 63, 75-83. DOI: 10.1016/S0167-1987(01)00238-0
  • 19. Pandey, V.C., O. Bajpai, and N. Singh. 2016. Energy crops in sustainable phytoremediation. Renewable and Sustainable Energy Reviews. 54: p. 58-73. https://doi.org/10.1016/j.egypro.2019.01.223
  • 20. Volkohon, V.V. (2000). Assotsiativnye azotfiksiruyushchie mikroorganizmy [Associative nitrogen-fixing microorganisms]. Microbial Journal., 62(2), 51−68 [in Ukrainian].
  • 21. Zasidko, I.B., Polturenko, M.S., & Mandryk, O.M. (2017). Sewage sludge as a secondary raw material for the production of bricks. (Ser. Tekhnichni nauky). Bulletin of the National University of Water Management and Nature Management. Series: Technical Sciences, 3(79), 104–113. Retrieved from: http://visnyk.nuwm.edu.ua/index.php/tehn/article/view/262. [In Ukrainian].
  • 22. Zhen, G., Lu, X., Kato, H., Zhao, Y., & Li, Y.-Y. (2017). Overview of pretreatment strategies for enhancing sewage sludge disintegration and subsequent anaerobic digestion: Current advances, full-scale application and future perspectives. Renewable and Sustainable Energy Reviews, 69, 559–577. https://doi.org/10.1016/j.rser.2016.11.187
  • 23. Koval'ova S. P., Mozharivs'ka I. A.2020. Kontsentratsiya vazhkykh metaliv u grunti pry vyroshchuvanni enerhetychnykh kulʹtur na terytoriyi radioaktyvnoho zabrudnennya. Naukovi horyzonty. 3(88). 121–126 doi: 10.33249/2663-2144-2020-88-3-121-126
  • 24. Franchuk H.M. 2009. Otsinyuvannya zabrudnennya hruntiv naftoproduktamy vnaslidok diyalʹnosti avtozapravnykh stantsiy / Visn. Nats. aviats. un-tu. 1. 46-49.
  • 25. Koretsʹkyy Yu. O. 2020. Mekhanizmy derzhavnoho rehulyuvannya ekolohichnoyi bezpeky v nadzvychaynykh sytuatsiyakh. Derzhavne upravlinnya ta mistseve samovryaduvannya, 1(44), 44-52.
  • 26. Korsun S.H., Klymenko I.I., Bolokhovsʹka V.A., Bolokhovsʹkyy V.V. 2019. Translokatsiya vazhkykh metaliv u systemi «grunt-roslyna» za vapnuvannya ta vplyvu biolohichnykh preparativ. Ahroekolohichnyy monitorynh. No. 1. 29-35: https://doi.org/10.33730/2077-4893.1.2019.163245].
  • 27. Kurylo V.L., Humentyk M.YA., Kvak V.M. 2015. Produktyvnistʹ miskantusu zalezhno vid hustoty stoyannya roslyn ta dozy vnesennya mineralʹnykh dobryv v umovakh zakhidnoyi chastyny Lisostepu Ukrayiny. Mater. Mizhnar. naukovo-prakt. internet-konferentsiyi, prysvyachenoyi 150-richchyu vid dnya narodzhennya akademika D.M. Pryanyshnykova ta Mizhnarodnomu Dnyu ahrokhimika (m. Lʹviv, 8–10 chervnya 2015 r.). Lʹviv. 267–275.
  • 28. Lopushnyak V.I., Hrytsulyak H.M. 2016. Translokatsiya vazhkykh metaliv u lantsi grunt-verba enerhetychna yak chynnyk ekolohichnoyi bezpeky bioenerhetychnykh system Ahrokhimiya i gruntoznavstvo. Kharkiv. 125–130.
  • 29. Kaletnik Grigoriy, Pryshliak Natalia, Tokarchuk Dina. 2021. Potential of Production of Energy Crops in Ukraine and their Processing on Solid Biofuels Ecological Engineering & Environmental Technology. 22(3), 59–70 https://doi.org/10.12912/27197050/135447
  • 30. Skachok L.M., Kvak V.M. 2016. Kompleksna otsinka vyroshchuvannya bioenerhetychnykh kulʹtur zalezhno vid riznykh system udobrennya. Bioenerhetyka. 24. 86-92. https://doi.org/10.47414/np.24.2016.216898
  • 31. Yakistʹ gruntu. 2009. Vyznachennya vmistu rukhomykh spoluk kadmiyu v buferniy amoniyno-atsetatniy vytyazhtsi z rN 4,8 metodom atomno-absorbtsiynoyi spektrofotometriyi: DSTU 4770.3:2007. [Chynnyy vid 2009-01-01]. K.: Derzhspozhyvstandart Ukrayiny. (Natsionalʹnyy standart Ukrayiny).
  • 32. Yakistʹ gruntu. 2009. Vyznachennya vmistu rukhomykh spoluk svyntsyu v buferniy amoniyno-atsetatniy vytyazhtsi z rN 4,8 metodom atomno-absorbtsiynoyi spektrofotometriyi : DSTU 4770.9:2007. [Chynnyy vid 2009-01-01]. K.: Derzhspozhyvstandart Ukrayiny, 2009. (Natsionalʹnyy standart Ukrayiny).
  • 33. Shepelyuk M.O. 2019. Vyznachennya vmistu vazhkykh metaliv u gruntakh riznykh ekolohichnykh zon mista Lutsʹka. Tavriysʹkyy naukovyy visnyk, 317-321.
  • 34. Voytyuk YU.YU. 2016. Pohlynannya vazhkykh metaliv iz gruntu roslynnistyu zony tekhnohenezu. Vìsnik Dnìpropetrovs’kogo unìversitetu. Serìâ Geologìâ, geographìâ Dnipropetrovsk University Bulletin. Series: geology, geography. 24(2), 11–17. DOI: 10.15421/111626
  • 35. Skachok L.M., Kvak V.M. 2016. Kompleksna otsinka vyroshchuvannya bioenerhetychnykh kulʹtur zalezhno vid riznykh system udobrennya. Bioenerhetyka. 24. 86-93.
  • 36. Kurylo V.L., Humentyk M.YA., Kvak V.M. 2010. Miskantus – perspektyvna enerhetychna kulʹtura dlya vyrobnytstva biopalyva. Ahrobiolohiya. 4(80). 62–66.
  • 37. Lopushniak V., Hrytsuliak H., Kotsiubynsky A., Lopushniak H. 2021. Forecasting the Productivity of the Agrophytocenoses of the Miscanthus Giganteus for the Fertilization Based on the Wastewater Sedimentation Using Artificial Neural Networks Ecological Engineering & Environmental Technology. 22(3), 11–19. https://doi.org/10.12912/27197050/134867
  • 38. Karbivska U., Kurgak V., Gamayunova V., Butenko A., Malynka L., Kovalenko I., Onychko V., Masyk I., Chyrva A., Zakharchenko E., Tkachenko O., Pshychenko O. 2020. Productivity and Quality of Diverse Ripe Pasture Grass Fodder Depends on the Method of Soil Cultivation Acta Agrobotanica 73(3). DOI: https://doi.org/10.5586/aa.7334 https://pbsociety.org.pl/journals/index.php/aa/article/view/aa.7334
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2e15e782-5272-4feb-b35a-385eb9def915
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.