PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Insights into the depression effect and adsorption mechanism of HACC on chalcopyrite surface in Cu-Mo flotation separation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, hydroxypropyltrimethyl ammonium chloride chitosan (HACC) was first introduced as a depressant during separating chalcopyrite from molybdenite (Cu-Mo). The selective effects of HACC on the separation of Cu-Mo were conducted by single-mineral flotation experiments. The findings from this study revealed that HACC helped separate Cu and Mo efficiently at pH 6 with 8 mg/dm3 of HACC, resulting in 76.22% and 5.38% of Mo and Cu flotation recovery, respectively. The adsorption mechanism of HACC was investigated via zeta potential, adsorption density, and contact angle measurement along with FT-IR and XPS analyses. The contact angle and adsorption density measurements offer indisputable proof that HACC can adsorb on the surface of chalcopyrite. Furthermore, FT-IR and XPS analyses confirm that N atoms in quaternary ammonium groups of HACC interact with Cu sites on the surface of chalcopyrite. The findings also suggest that HACC adsorbs on the surface without significantly impacting molybdenite. All these results confirm that HACC can be an effective chalcopyrite depressant.
Słowa kluczowe
Rocznik
Strony
art. no. 172481
Opis fizyczny
Bibliogr. 33 poz., tab., wykr.
Twórcy
autor
  • State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming 650093, China
  • School of Metallurgical Engineering, Anhui University of Technology, Ma’anshan 243002, China
  • School of Metallurgical Engineering, Anhui University of Technology, Ma’anshan 243002, China
  • School of Metallurgical Engineering, Anhui University of Technology, Ma’anshan 243002, China
  • State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming 650093, China
Bibliografia
  • AL-MANHEL, A, AL-HILPHY A., NIAMAH A., 2018. Extraction of chitosan, characterisation and its use for water purification. Journal of the Saudi Society of Agricultural Sciences, 17(2), 186-190.
  • ANDREICA, B, CHENG, X, MARIN, L., 2020. Quaternary ammonium salts of chitosan. A critical overview on the synthesis and properties generated by quaternization. European Polymer Journal, 139, 110016.
  • ANSARI, A., PAWLIK, M., 2007. Floatability of chalcopyrite and molybdenite in the presence of lignosulfonates. Part II. Hallimond tube flotation. Minerals Engineering, 20, 609–616.
  • BULATOVIC, S., 2007. Handbook of flotation reagents: Chemistry, theory and practice: Flotation of Sulfide Ores. 1, 235–293.
  • CAI, J., DANG, Q., LIU C., WANG, T., FAN, B., YAN, J., XU, Y., 2015. Preparation, characterization and antibacterial activity of O-acetyl-chitosan-N-2-hydroxypropyl trimethyl ammonium chloride. International Journal of Biological Macromolecules, 80: 8-15.
  • CHEN, Y., CHEN, X., PENG, Y., 2020. The effect of sodium hydrosulfide on molybdenite flotation as a depressant of copper sulfides. Minerals Engineering, 148, 106203.
  • CHEN, X., LIU, W., WANG, L., LIU, W., SUN, W., ZHANG, N., 2023. A novel depressant N,N-bis(phosphonomethyl)glycine for magnesite-dolomite separation and its mechanism. Minerals Engineering, 202, 108281.
  • CHI, W., QIN, C., ZENG, L., LI, W., WANG, W., 2007. Microbiocidal activity of chitosan-N-2-hydroxypropyl trimethyl ammonium chloride. Journal of Applied Polymer Science, 103(6): 3851-3856.
  • GUAN, C., YIN, Z., KHOSO, S., SUN, W., HU, Y., 2018. Performance analysis of thiocarbonohydrazide as a novel selective depressant for chalcopyrite in molybdenite-chalcopyrite separation. Multidisciplinary Digital Publishing Institute, 8, 142.
  • HAN, G., WEN, S., WANG, H., FENG, Q., BAI, X., 2021. Pyrogallic acid as depressant for flotation separation of pyrite from chalcopyrite under low-alkalinity conditions. Separation and Purification Technology, 267: 118670.
  • LI, M., WEI, D., LIU, Q., LIU, W., ZHENG, J., SUN, H., 2015. Flotation separation of copper-molybdenum sulfides using chitosan as a selective depressant. Minerals Engineering, 83, 217-222.
  • LI, M., WEI, D., SHEN, Y., LIU, W., GAO, S., LIANG, G., 2015. Selective depression effect in flotation separation of copper–molybdenum sulfides using 2,3-disulfanylbutanedioic acid. Transactions of Nonferrous Metals Society of China, 25, 3126–3132.
  • LI, M., LIU, J., HU, Y., GAO, X., YUAN, Q., ZHAO, F., 2020. Investigation of the specularite/chlorite separation using chitosan as a novel depressant by direct flotation. Carbohydrate Polymers, 240, 116334.
  • LI, M., YANG, C., WU, Z., GAO, X., TONG, X., YU, X., LONG, H., 2022. Selective depression action of taurine in flotation separation of specularite and chlorite. Int. J. Min. Sci. Technol., 32(3), 637-644.
  • LIU, J., TIAN Y., AN X., LI, G., KANG, Y., 2015. Flocculation performance and mechanism of removing pectin by n-hydroxypropyl trimethyl ammonium chloride chitosan. Journal of Dispersion Science & Technology, 36(11), 1612-1620.
  • LU, L., XU, L., SHI, Q., MENG, J., LIU, R., 2022. Microscale insights into the influence of grinding media on spodumene micro-flotation using mixed anionic/cationic collectors. Int. J. Min. Sci. Technol., 32(1), 181-189.
  • MA, J., FU, K., DING, L., GUAN, Q., ZHANG, S., ZHANG, H., SHI, J., FU, X., 2017. Flocculation performance of cationic polyacrylamide with high cationic degree in humic acid synthetic water treatment and effect of kaolin particles. Separation & Purification Technology, 181(6), 201-212.
  • NAO, Y., LIU, W., CHEN, X., WANG, Z., LIU, W., SUN, W., SHEN, Y., 2023. The role of sodium tripolyphosphate in wet grinding process of magnesite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 668,131449.
  • PENG, H., WU, D., ABDALLA, M., LUO, W., JIAO, W., BIE, X., 2017. Study of the effect of sodium sulfide as a selective depressor in the separation of chalcopyrite and molybdenite. Minerals, 7, 51.
  • POPERECHNIKOVA, O.Y., FILIPPOV, L.O., SHUMSKAYA, E.N., FILIPPOVA, I.V., 2017. Intensification of the reverse cationic flotation of hematite ores with optimization of process and hydrodynamic parameters of flotation cell. Journal of Physics: Conference Series, 879(1), 012016.
  • RINAUDO, M., 2007. Chitin and chitosan: properties and applications. Cheminform, 31(7), 603-632.
  • SUYANTARA, G., HIRAJIMA, T., MIKI, H., SASAKI, K., YAMANE, M., TAKIDA, E., KUROIWA, S., IMAIZUMI, Y., 2018. Effect of Fenton-like oxidation reagent on hydrophobicity and floatability of chalcopyrite and molybdenite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 554, 34–48.
  • TRIFFETT, B., VELOO, C., ADAIR, B., BRADSHAW, D., 2008. An investigation of the factors affecting the recovery of molybdenite in the Kennecott Utah Copper bulk flotation circuit. Minerals Engineering, 21(12-14), 832-840.
  • WEI, Z., LI, Y., HUANG L., 2021. New insight into the anisotropic property and wettability of molybdenite: A DFT study, Minerals Engineering. 170, 107058.
  • YAN, H., YANG, B., ZENG, M., HUANG, P., TENG, A., 2020. Selective flotation of Cu-Mo sulfides using xanthan gum as a novel depressant. Minerals Engineering, 156, 106486.
  • YANG, B., YAN, H., ZENG, M., HUANG, P., JIA, F., TENG, A., 2020. A novel copper depressant for selective flotation of chalcopyrite and molybdenite. Minerals Engineering, 151, 106309.
  • YIN, W., ZHANG, L., XIE, F., 2010. Flotation of Xinhua molybdenite using sodium sulfide as modifier. Transactions of Nonferrous Metals Society of China, 20(4), 702–706.
  • YIN, Z., SUN, W., HU, Y., ZHAI, J., GUAN, Q., 2017. Evaluation of the replacement of NaCN with depressant mixtures in the separation of copper–molybdenum sulphide ore by flotation. Separation and Purification Technology, 173, 9-16.
  • YIN, Z., CHEN, S., XU, Z., ZHANG, C., HE, J., ZOU, J., CHEN, D., SUN, W., 2020. Flotation separation of molybdenite from chalcopyrite using an environmentally efficient depressant L-cysteine and its adsorption mechanism. Minerals Engineering, 156, 106438.
  • YUAN, D., CADIEN, K., LIU, Q., ZENG, H., 2019. Selective separation of copper-molybdenum sulfides using humic acids. Minerals Engineering, 133, 43–46.
  • ZHANG, X., LU, L., CAO, Y., YANG, J., CHE, W., LIU, J., 2020. The flotation separation of molybdenite from chalcopyrite using a polymer depressant and insights to its adsorption mechanism. Chemical Engineering Journal, 395, 125137.
  • ZENG, G., OU L., ZHANG W., ZHU, Y., 2020. Effects of sodium alginate on the flotation separation of molybdenite from chalcopyrite using kerosene as collector. Frontiers in Chemistry, 8, 242.
  • ZHONG, C., FENG, B., WANG, H., CHEN, Y., GUO, M., 2021. The depression behavior and mechanism of tragacanth gum on chalcopyrite during Cu-Mo flotation separation. Advanced Powder Technology, 32, 2712–2719.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2e146c4f-549f-46de-845b-e5e1af2ce528
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.