PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Modeling of resident space object light curves with blender software

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Modeling the behavior and shape of space objects is widely used in modern astrophysical research methods. Such studies are often used to determine the shape and modeling of physical parameters of variable stars and asteroids. Therefore, based on the database of photometric observations of resident space objects (RSO) available in the Laboratory of Space Research of Uzhhorod National University, it was decided to find a means for modeling light curves to confirm the shape of objects and determine the parameters of their rotation by analogy with objects in deep space. We attempted to use Blender software to model the RSO synthetic light curves (LCs). While Blender has been a popular open-source software among animators and visual effects artists, in recent years, it has also become a tool for researchers: for example, it is used for visualizing astrophysical datasets and generating asteroid light curves. In the process of modeling, we used all the advantages of Blender software such as Python scripting and used GPU. We made synthetic LCs for two objects – TOPEX/Poseidon and COSMOS-2502. A 3D model for Topex/Poseidon was available on the NASA website, but after research of official datasheets, we figured out that the available 3D model requires corrections in the dimensions of the RSO body and solar panel. A 3D model of COSMOS-2502 was made according to available information from the internet. A manual modeling process was performed according to well-known RSO’s self-rotation parameters. For example, we also show the results of LC modeling using the Markov chain Monte Carlo (MCMC) method. All synthetic LCs obtained in the research process are well correlated with real observed LCs.
Rocznik
Strony
42--54
Opis fizyczny
Bibliogr. 36 poz., rys.
Twórcy
autor
  • Uzhhorod National University, Space Research Laboratory, 2a Daleka Street, Uzhhorod, 88000, Ukraine
autor
  • Uzhhorod National University, Space Research Laboratory, 2a Daleka Street, Uzhhorod, 88000, Ukraine
  • Uzhhorod National University, Space Research Laboratory, 2a Daleka Street, Uzhhorod, 88000, Ukraine
  • Uzhhorod National University, Space Research Laboratory, 2a Daleka Street, Uzhhorod, 88000, Ukraine
Bibliografia
  • Bedard, D. (2013). Spectrometric Characterization of Artificial Earth-Orbiting Objects: ´ Laboratory and Observational Experiments (Doctoral dissertation, PhD thesis, Royal Military College of Canada).
  • Bradstreet, D. H. (2005). Fundamentals of solving eclipsing binary light curves using Binary Maker 3. The Society for Astronomical Sciences 24th Annual Symposium on Telescope Science, held May 24-26, 2005. Published by Society for Astronomical Sciences, 2005., Vol. 24, p. 23.
  • Burley, B., & Studios, W. D. A. (2012). Physically-based shading at Disney, Acm Siggraph, Vol. 2012, pp. 1-7.
  • Cabello R. (2024) Three.js, GitHub, Available at: https://github.com/mrdoob/three.js.
  • Čokina, M., Fedurco, M., & Parimucha, ˇ S. (2021). ELISa: A new tool for fast modelling of ˇ eclipsing binaries. Astronomy & Astrophysics, 652, A156.
  • Community, B.O. (2024) Blender - a 3D modelling and rendering package, Stichting Blender Foundation, Amsterdam. Available at: http://www.blender.org.
  • Cullen L., & Paterson J. (2021) Voxsteroid, GitHub, Available at: https://github.com/ jamjar919/voxsteroid.
  • Foreman-Mackey, D., Hogg, D. W., Lang, D., & Goodman, J. (2013). emcee: the MCMC hammer. Publications of the Astronomical Society of the Pacific, 125(925), 306.
  • Fulcoly D., Kalamaroff K., and Chun F. (2012) Determining Basic Satellite Shape from Photometric Light Curves, Journal of Spacecraft and Rockets, Vol. 49, No. 1, pp. 76-82, January-February.
  • Goodman, J., & Weare, J. (2010). Ensemble samplers with affine invariance. Communications in applied mathematics and computational science, 5(1), 65-80.
  • Holzinger M., Alfriend K., Wetterer C., Luu K., Sabol C., Hamada K., and Harms A. (2012) Attitude Estimation for Unresolved Agile Space Objects with Shape Model Uncertainty, Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS), Maui, HI, September.
  • Jah M. K. & Madler R. A. (2007) Satellite Characterization: Angles and Light Curve Data Fusion for Spacecraft State and Parameter Estimation, Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS), Maui, HI, September 11-14.
  • Jolley, A. R. (2014). Multicolour Optical Photometry of Active Geostationary Satellites Using a Small Aperture Telescope (Doctoral dissertation).
  • Kaasalainen M. and Torppa J. (2001a) Optimization Methods for Asteroid Lightcurve Inversion: I. Shape Determination, Icarus, Vol. 153, No. 1, pp. 24-36, September.
  • Kaasalainen M., Torppa J., and Muinonen K. (2001b) Optimization Methods for Asteroid Lightcurve Inversion: II. The Complete Inverse Problem, Icarus, Vol. 153, No. 1, pp. 37-51, September.
  • Kaasalainen M., Torppa J., and Piironen J. (2002) Models of Twenty Asteroids from Photometric Data, Icarus, Vol. 159, pp. 369-395.
  • Koshkin N., Shakun L., Korobeynikova E., Melikyants S., Strakhova S., Dragomiretsky V., A.Ryabov, T.Golubovskaya, Terpan, S. (2018) Monitoring of space debris rotation based on photometry. Odessa Astronomical Publications, 31, 179-185.
  • N. Koshkin, L. Shakun, E. Korobeynikova, et al. (2021). ATLAS of light curves of space objects, Odessa I.I. Mechnikov national univ., Ukraine research inst. “Astronomical observatory”, Dep. of space research. - Odesa, - Part 6 (2019 - 2020). - 200 p. http://dspace.onu.edu.ua: 8080/handle/123456789/32063.
  • Krebs, Gunter D. (2024) Lotos-S1 (14F145). Gunter’s Space Page. Available at: https: //space.skyrocket.de/doc_sdat/lotos-s1.htm.
  • Kudak, V., Epsihev, V. P., Perig, V. M., Neybauer, I.F. (2017) Determining the orientation and spin period of TOPEX/Poseidon satellite by a photometric method, Astrophysical Bulletin, 72, 340-348.
  • Kudak, V., & Perig, V. (2022) QHY-174M-GPS camera as the device for photometry of artificial satellites. Artificial Satellites, 57(1), 47-57.
  • Linares R., Crassidis J. L., Jah M. K., and Kim H. (2010) Astrometric and Photometric Data Fusion for Resident Space Object Orbit, Attitude, and Shape Determination Via Multiple-Model Adaptive Estimation, AIAA Guidance, Navigation, and Control Conference, Toronto, Ontario Canada, August 2-5.
  • Lomb, N. R. (1976). Least-squares frequency analysis of unequally spaced data. Astrophysics and space science, 39, 447-462.
  • Luu, K. K., Matson, C. L., Snodgrass, J., Giffin, M., Hamada, K., & Lambert, J. (2003). Object characterization from spectral data. Proc. AMOS Technical Conference, Maui, HI.
  • N2YO (2024) Technical details for satellite COSMOS 2502. Real Time Satellite Tracking and Predictions. Available at: https://www.n2yo.com/satellite/?s=40358.
  • NASA. (2010) TOPEX/Poseidon Fact Sheet. Ocean Surface Topography from Space, Available at: https://sealevel.jpl.nasa.gov/system/documents/files/1674_tp-fact-sheet.pdf.
  • NASA. (2024) 3D Models, Available at: https://nasa3d.arc.nasa.gov/models.
  • Prša, A., Conroy, K. E., Horvat, M., Pablo, H., Kochoska, A., Bloemen, S., ... & Degroote, P. ˇ (2016). Physics of eclipsing binaries. II. Toward the increased model fidelity.The Astrophysical Journal Supplement Series, 227(2), 29.
  • Rhodes, B. (2019) Skyfield: High precision research-grade positions for planets and Earth satellites generator, Astrophysics Source Code Library ascl:1907.024.
  • Sagnieres L. B., Sharf I., & Deleflie F. (2020) Simulation of long-term rotational dynamics of large space debris: A TOPEX/Poseidon case study, Advances in Space Research, 65(4), 1182-1195.
  • Scargle, J. D. (1998). Studies in astronomical time series analysis. V. Bayesian blocks, a new method to analyze structure in photon counting data. The Astrophysical Journal, 504(1), 405.
  • Scott, R., & Wallace, B. (2008). Satellite characterization using small aperture instruments at DRDC Ottawa. Proceedings of the Advanced Maui Optical and Space Surveillance Technologies Conference pp. 337-347.
  • Somers, P. (2011). Cylindrical RSO signatures, spin axis orientation and rotation period determination. Advanced Maui Optical and Space Surveillance Technologies Conference p. E10.
  • Torppa J., Kaasalainen M., Michalowski T., Kwiatkowski T., Kryszczynska A., Denchev P., and Kowalski R. (2002) Shapes and Rotational Properties of Thirty Asteroids from Photometric Data, Icarus, Vol. 164, pp. 346-383.
  • Van Rossum, G., & Drake, F. L. (2009) Python 3 Reference Manual. Scotts Valley, CA: CreateSpace. Available at: https://www.python.org/
  • Wetterer C. J. (2009) Attitude Estimation from Light Curves, Guidance, Control, and Dynamics, Vol. 32, No. 5, pp. 1648-1651, September-October.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2e123607-8290-4eca-bfb6-652779491e9c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.