PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Determination of the Mechanical and Thermal Properties, and Impact Sensitivity of Pressed HMX-based PBX

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Submicron- and nano-explosives have attracted growing attention, while the mechanism of how particle size influences the impact sensitivity is not completely understood. In the present work, HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine) based PBXs (plastic bonded explosives) of three particle size distributions (1-2 and 10-20 μm, and 100-300 nm) and two pressed densities (91%TMD and 79%TMD) were characterized and tested with a range of techniques to determine their mechanical and thermal properties and impact sensitivities. The results demonstrated that with decreased particle size, the mechanical strength as well as the thermal conductivity were dramatically improved, and the impact sensitivity was significant decreased. The structure of impacted samples suggested that the ignition mechanism is dependant on the particle size. Samples with higher density were more sensitive to impact, as the impact force acting on these samples was higher. The correlation between particle size and impact sensitivity is discussed in detail.
Słowa kluczowe
Rocznik
Strony
295--315
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
autor
  • Institute of Chemical Materials, China Academy of Engineering Physics, 64 Mianshan Road, Mianyang, Sichuan, P. R. China
autor
  • Institute of Chemical Materials, China Academy of Engineering Physics, 64 Mianshan Road, Mianyang, Sichuan, P. R. China
autor
  • Institute of Chemical Materials, China Academy of Engineering Physics, 64 Mianshan Road, Mianyang, Sichuan, P. R. China
autor
  • Institute of Chemical Materials, China Academy of Engineering Physics, 64 Mianshan Road, Mianyang, Sichuan, P. R. China
autor
  • Institute of Chemical Materials, China Academy of Engineering Physics, 64 Mianshan Road, Mianyang, Sichuan, P. R. China
autor
  • Institute of Chemical Materials, China Academy of Engineering Physics, 64 Mianshan Road, Mianyang, Sichuan, P. R. China
  • Institute of Chemical Materials, China Academy of Engineering Physics, 64 Mianshan Road, Mianyang, Sichuan, P. R. China
  • Institute of Chemical Materials, China Academy of Engineering Physics, 64 Mianshan Road, Mianyang, Sichuan, P. R. China
Bibliografia
  • [1] Zohari, N.; Keshavarz, M.H.; Seyedsadjadi, S.A. The Advantages and Shortcomings of Using Nano-sized Energetic Materials. Cent. Eur. J Energ. Mater. 2013, 10(1): 135-147.
  • [2] Pivkina, A.; Ulyanova, P.; Frolov, Y. Nanomaterials for Heterogeneous Combustion. Propellants Explos. Pyrotech. 2004, 29(1): 39-48.
  • [3] Lee, K.Y.; Kennedy, J.E.; Hill, L.G.; Spontarelli, T.; Stine, J.R. Synthesis, detonation spreading and reaction rate modeling of fine TATB. Int. Symp. on Detonation, Proc., 11th, Snowmass Village, Colorado, 1998, 362-370.
  • [4] Stepanov, V.; Anglade, V.; Hummers, W.; Bezmelnitsyn, A.V.; Krasnoperov, L.N. Production and Sensitivity Evaluation of Nanocrystalline RDX-based Explosive Compositions. Propellants Explos. Pyrotech. 2011, 36(3): 240-246.
  • [5] An, C.W.; Li, H.Q.; Guo, W.J.; Geng, X.H.; Wang, W.Y. Nano Cyclotetramethylene Tetranitramine Particles Prepared by a Green Recrystallization Process. Propellants Explos. Pyrotech. 2015, 39(5): 701-706.
  • [6] Zhang, Y.; Liu, D.; Lv, C. Preparation and Characterization of Reticular Nano-HMX. Propellants Explos. Pyrotech. 2005, 30(6): 438-441.
  • [7] Wang, Y.; Jiang, W.; Song, X.L.; Deng, G.; Li, F.S. Insensitive HMX (Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine) Nanocrystals Fabricated by High-Yield, Low-Cost Mechanical Milling. Cent. Eur. J. Energ. Mater. 2013, 10(2): 277-287.
  • [8] Bayat, Y.; Zeynali, V. Preparation and Characterization of Nano-CL-20 Explosive. J. Energ. Mater. 2011, 29(4): 281-291.
  • [9] Wang, Y.; Song, X.; Song, D.; Jiang, W.; Liu, H.Y.; Li, F.S. A Versatile Methodology Using Sol-Gel, Supercritical Extraction, and Etching to Fabricate a Nitramine Explosive: Nanometer HNIW. J. Energ. Mater. 2013, 31(1): 49-59.
  • [10] Pant, A.; Nandi, A.K.; Newale, P.; Gajbhiye, V.P.; Prasanth, H.; Pandey, R.K. Preparation and Characterization of Ultrafine RDX. Cent. Eur. J. Energ. Mater. 2013, 10(3): 393-407.
  • [11] Talawar, M.B.; Agarwal, A.P.; Anniyappan, M.; Gore, G.M.; Asthana, S.N.; Venugopalan, S. Method for Preparation of Fine TATB (2-5 μm) and its Evaluation in Plastic Bonded Explosive (PBX) Formulations. J. Hazard. Mater. 2006, 137(3): 1848-1852.
  • [12] Risse, B.; Schnell, F.; Spitzer, D. Synthesis and Desensitization of Nano-β-HMX. Propellants Explos. Pyrotech. 2014, 39(3): 397-401.
  • [13] Blas, L.; Klaumünzer, M.; Pessina, F.; Braun, S.; Spitzer, D. Nanostructuring of Pure and Composite-Based K6 Formulations with Low Sensitivities. Propellants Explos. Pyrotech. 2015, 40(6): 938-944.
  • [14] Klaumünzer, M.; Pessina, F.; Spitzer, D. Indicating Inconsistency of Desensitizing High Explosives against Impact through Recrystallization at the Nanoscale. J. Energ. Mater. 2017 (2016, on line), 35(4): 1-10.
  • [15] Radacsi, N.; Bouma, R.H.B.; Haye, E.L.M.K.; ter Horst, J.H.; Stankiewicz, A.I.; van der Heijden, A.E.D.M. On the Reliability of Sensitivity Test Methods for Submicrometer-Sized RDX and HMX Particles. Propellants Explos. Pyrotech. 2013, 38(6): 761-769.
  • [16] Field, J.E. Hot Spot Ignition Mechanisms for Explosives. Acc. Chem. Res. 1992, 25: 489-496.
  • [17] Massoni, J.; Saurel, R.; Baudin, G.; Demol, G. A Mechanistic Model for Shock Initiation of Solid Explosives. Phys. Fluids 1999, 11(3): 710-736.
  • [18] Parker, W.J.; Jenkins, R.J.; Butler, C.P.; Abbott, G.L. Flash Method of Determining Thermal Diffusivity, Heat Capacity, and Thermal Conductivity. J. Appl. Phys. 1961, 32(9): 1679-1684.
  • [19] Dixon, J.W.; Mood, A.M. A Method for Obtaining and Analyzing Sensitivity Data. J. Am. Stat. Assoc. 1948, 43(241): 109-126.
  • [20] Wiegand, D.A. Mechanical Failure of Composite Plastic Bonded Explosives and Other Energetic Materials. Int. Symp. on Detonation, Proc., 11th, Snowmass Village, Colorado, 1998, 744-750.
  • [21] Wang, M.; Pan, N.; Wang, J.; Chen, S. Mesoscopic Simulations of Phase Distribution Effects on the Effective Thermal Conductivity of Microgranular Porous Media. J. Colloid Interface Sci. 2007, 311(2): 562-570.
  • [22] Balzer, J.E.; Siviour, C.R.; Walley, S.M.; Proud, W.G.; Field, J.E. Behaviour of Ammonium Perchlorate-based Propellants and a Polymer-Bonded Explosive under Impact Loading. Proc. R. Soc. Lond. A 2004, 460: 781-806.
  • [23] Williamson, D.M.; Siviour, C.R.; Proud, W.G.; Palmer, S.J.P.; Govier, R.; Ellis, K.; Blackwell, P.; Leppard, C. Temperature-Time Response of a Polymer Bonded Explosive in Compression (EDC37). J. Phys. D: Appl. Phys. 2008, 41(8): 085404.
  • [24] Chou, P.; Ritman, Z.; Liang, D. Viscosity and Heat Conduction Effects in Pore Collapse. Mech. Mater. 1994, 17: 295-305.
  • [25] Levesque, G.; Vitello, P.; Howard, W.M. Hot-spot Contributions in Shocked High Explosives from Mesoscale ignition models. J. Appl. Phys. 2013, 113: 233513.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2e05cea9-21d9-49d2-bc56-5976e979b9b9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.