PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effectiveness of using physical pretreatment of lignocellulosic biomass

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Pretreatment is aimed at making lignin structures, which in turn causes decrystallisation and depolymerisation of cellulose. This treatment allows to increase the energy potential of substrates. A properly selected method allows for obtaining larger amounts of biogas with a high content of biomethane. The aim of the study was to analyse selected pretreatment methods (ultrasonic and hydrothermal) for biogas yield, including biomethane, and to demonstrate the effectiveness of obtaining additional electricity and heat from these methods. It was based on the literature data. On basis the study, the following information was obtained: average yield of biogas and biomethane before and after treatment, difference in yield of biogas and biomethane after treatment, and the effect of treatment on the substrate used. Moreover, an estimate was made of the effectiveness of obtaining additional electricity and heat from selected pretreatment methods compared to hard coal. Based on the analysis of the ultrasonic treatment analysis, it was shown that the best result was obtained with the ultrasound treatment of the mixture of wheat straw and cattle manure with the following parameters: frequency 24 kHz, temperature 44.30°C, time 21.23 s. This allowed a 49% increase in biogas production. The use of pretreatment would therefore allow the production of more electricity and heat capable of replacing conventional heat sources such as coal.
Wydawca
Rocznik
Tom
Strony
62--69
Opis fizyczny
Bibliogr. 49 poz., tab.
Twórcy
  • International Academy of Applied Sciences in Łomża, Faculty of Agricultural Sciences and Engineering and Technology, Studencka St 19, 18-402 Łomża, Poland
  • Institute of Technology and Life Sciences – National Research Institute, Hrabska Av. 3, Falenty, 05-090 Raszyn, Poland
Bibliografia
  • Agbor, V.B. et al. (2011) “Biomass pretreatment: Fundamentals toward application,” Biotechnology Advances, 29, pp. 675–685. Available at: https://doi.org/10.1016/j.biotechadv.2011.05.005.
  • Amirante, R. et al. (2017) “Acoustic cavitation by means ultrasounds in the extra virgin olive oil extraction process,” Energy Procedia, 126, 201709, pp. 82–90. Available at: https://doi.org/10.1016/j.egypro.2017.08.065.
  • Bartoszewicz-Burczy, H. (2012) “Potencjał i energetyczne wykorzystanie biomasy w krajach Europy Środkowej [Potential and Energy use of biomass in Central European countries]”, Energetyka, 65, 12, pp. 860–865.
  • Baudel, H.M., Zaror, C. and De Abreu, C.A. (2005) “Improving the value of sugarcane bagasse wastes via integrated chemical production systems: An environmentally friendly approach,” Industrial Crops and Products, 21(3), pp. 309–315. Available at: https://doi.org/10.1016/j.indcrop.2004.04.013.
  • Cao, W. et al. (2012) “Comparison of the effects of five pretreatment methods on enhancing the enzymatic digestibility and ethanol production from sweet sorghum bagasse,” Bioresource Technology, 111, pp. 215–221. Available at: https://doi.org/10.1016/j.biortech.2012.02.034.
  • Chandra, R., Takeuchi, H. and Hasegawa, T. (2012) “Hydrothermal pretreatment of rice straw biomass: A potential and promising method for enhanced methane production,” Applied Energy, 94 (C), pp. 129–140. Available at: https://doi.org/10.1016/j.apenergy.2012.01.027.
  • Chen, W. et al. (2011) “Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments,” Carbohydrate Polymers, 83(4), pp. 1804–1811. Available at: https://doi.org/10.1016/j.carbpol.2010.10.040.
  • Clodoveo, M.L., Durante, V. and La Notte, D. (2013) “Working towards the development of innovative ultrasound equipment for the extraction of virgin olive oil,” Ultrasonics Sonochemistry, 20 (5), pp. 1261–1270. Available at: https://doi.org/10.1016/j.ult-sonch.2013.02.001.
  • Czekała, W. et al. (2016) “Produkcja biogazu z odpadów komunalnych [Biogas production from municipal waste],” Technika Rolnicza, Ogrodnicza, Leśna, 5, pp. 21–25.
  • Dasgupta, A. and Chandel, M.K. (2019) “Enhancement of biogas production from organic fraction of municipal solid waste using hydrothermal pretreatment,” Bioresource Technology Reports, 7, 100281. Available at: https://doi.org/10.1016/J.BITEB.2019.100281.
  • Fuerstenau, D.W. and Abouzeid, A.Z.M. (2002) “The energy efficiency of ball milling in comminution,” International Journal of Mineral Processing, 67(1–4), pp. 161–185. Available at: https://doi.org/10.1016/S0301-7516(02)00039-X.
  • Garuti, M. et al. (2018) “Monitoring of full-scale hydrodynamic cavitation pretreatment in agricultural biogas plant,” Bioresource Technology, 247, pp. 599–609. Available at: https://doi.org/10.1016/j.biortech.2017.09.100.
  • Ginalski, Z. (2012) Substraty dla biogazowni rolniczych [Substrates for agricultural biogas plants]. Radom: CDR O. Radom. Available at: https://cdr.gov.pl/pol/OZE/substraty.pdf (Accessed: October 2, 2012).
  • Hashemi, S.S., Karimi, K. and Mirmohamadsadeghi, S. (2019) “Hydrothermal pretreatment of safflower straw to enhance biogas production,” Energy, 172, pp. 545–554. Available at: https://doi.org/10.1016/j.energy.2019.01.149.
  • He, Y. et al. (2017) “Lipid production from dilute alkali corn stover lignin by Rhodococcus strains,” ACS Sustainable Chemistry & Engineering, 5(3), pp. 2302–2311. Available at: https://doi.org/10.1021/acssuschemeng.6b02627.
  • Hendriks, A.T.W.M. and Zeeman, G. (2009) “Pretreatments to enhance the digestibility of lignocellulosic biomass,” Bioresource Technology, 100(1), pp. 10–18. Available at: https://doi.org/10.1016/j.biortech.2008.05.027.
  • Izumi, K. et al. (2010) “Effects of particle size on anaerobic digestion of food waste,” International Biodeterioration & Biodegradation, 64(7), pp. 601–608. Available at: https://doi.org/10.1016/j.ibiod.2010.06.013.
  • Jarosz, Z. (2017) “Potencjał energetyczny biomasy roślinnej i możliwości wykorzystania do celów energetycznych [The Energy potential of plant biomass and the possibility of using it for energy purposes],” Zeszyty Naukowe Szkoły Głównej Gospodarstwa Wiejskiego w Warszawie – Problemy Rolnictwa Światowego, 17(32), 2, pp. 81–92.
  • Kardaś, D., Klein, M. and Polesek-Karczewska, S. (2014) “Termochemiczne metody przetwarzania lignocelulozy na surowiec do produkcji biogazu [Thermochemical methods of processing lignocellulose into a raw material for biogas production],” in I. Wojnowska-Baryła and J. Gołaszewski Konwersja odpadów przemysłu rolno-spożywczego do biogazu – podejście systemowe [Conversion of agri-food industry waste to biogas – a system approach]. Olsztyn: Wydawnictwo UWM, pp. 104–121.
  • Kasinath, A. et al. (2021) „Biomass in biogas production: Pretreatment and codigestion,” Renewable and Sustainable Energy Reviews, 150, 111509. Available at: https://doi.org/10.1016/j.rser.2021.111509.
  • Keep, U. et al. (2000) “Enhanced stabilization of sewage sludge through thermal hydrolysis – three years of experience with full-scale plant,” Water Science and Technology, 42, pp. 89–96. Available at: https://doi.org/10.2166/WST.2000.0178.
  • Khan, M.U. et al. (2022) “A review of recent advancements in pretreatment techniques of lignocellulosic materials for biogas production: Opportunities and limitations,” Chemical Engineering Journal Advances, 10, 100263. Available at: https://doi.org/10.1016/j.ceja.2022.100263.
  • Korycińska, A. (2009) “Stan rozwoju sektora biogazowni [The state of development of the biogas plant sector],” in Odnawialne źródła energii nowym wyzwaniem dla obszarów wiejskich w Polsce [Renewable energy sources a new challenge for rural areas in Poland]. Warszawa: Fundacja Programów Pomocy dla Rolnictwa FAPA, pp. 6–16.
  • Kumar, R., Singh, S. and Singh, O.V. (2008) “Bioconversion of lignocellulosic biomass: Biochemical and molecular perspectives,” Journal of Industrial Microbiology & Biotechnology, 35(5), pp. 377–391. Available at: https://doi.org/10.1007/s10295-008-0327-8.
  • Kwaśny, J., Banach, M. and Kowalski, Z. (2012) “Przegląd technologii produkcji biogazu różnego pochodzenia [Review of biogas production technologies of various origins],” Chemia. Czasopismo Techniczne, 17, pp. 83–102.
  • Lewandowski, W.M. (2007) Proekologiczne odnawialne źródła energii [Pro-ecological renewable energy sources]. Warszawa: Wydaw. WNT.
  • Luo, T. et al. (2019) “Hydrothermal pretreatment of rice straw at relatively lower temperature to improve biogas production via anaerobic digestion,” Chinese Chemical Letters, 30(6), pp. 1219–1223.
  • Michalska, K. and Ledakowicz, S. (2013) “Alkalipre-treatment of Sorghum Moench for biogas production,” Chemical Papers, 67 (9), pp. 1130–1137. Available at: https://doi.org/10.2478/s11696-012-0298-0.
  • Moiser, N. et al. (2005) “Features of promising technologies for pretreatment of lignocellulosic biomass,” Bioresource Technology, 96, pp. 673–686. Available at: https://doi.org/10.1016/j.biortech.2004.06.025.
  • Mozhiarasi, V. (2022) “Overview of pretreatment technologies on vegetable, fruit and flower market wastes disintegration and bioenergy potential: Indian scenario,” Chemosphere, 288(3), 132604. Available at: https://doi.org/10.1016/j.chemosphere.2021.132604.
  • Paul, S. and Dutta, A. (2018) “Challenges and opportunities of lignocellulosic biomass for anaerobic digestion,” Resources, Conservation and Recycling, 130, pp. 164–174. Available at: https://doi.org/10.1016/j.resconrec.2017.12.005.
  • Qiao, W. et al. (2011) “Evaluation of biogas production from different biomass wastes with / without hydrothermal pretreatment,” Renewable Energy, 36(12), pp. 3313–3318. Available at: https://doi.org/10.1016/j.renene.2011.05.002.
  • Rehman, M.S.U. et al. (2013) “Use of ultrasound in the production of bioethanol from lignocellulosic biomass,” Energy Education Science and Technology, Part A. Energy Science and Research, 30(2), pp. 1391–1410.
  • Robak, K. and Balcerek, M. (2017) “Rola obróbki wstępnej biomasy lignocelulozowej w produkcji bioetanolu II generacji [The role of pretreatment of lignocellulosic biomass in the production of bioethanol of the second-generation],” Acta Agrophysica, 24(2), pp. 301–318.
  • Salihu, A. and Alam, M.Z. (2016) “Pretreatment methods of organic wastes for biogas production,” Journal of Applied Sciences, 16(3), pp. 124–137. Available at: https://doi.org/10.3923/jas.2016.124.137.
  • Skibko, Z. et al. (2021) “Use of pellets from agricultural biogas plants in fertilisation of oxytrees in Podlasie, Poland,” Journal of Water and Land Development, 51, pp. 124–128. Available at: https://doi.org/10.24425/jwld.2021.139022.
  • Sołowski, G. (2016) “Obróbka lignocelulozy – pierwszy etap zielonej energii, chemii wraz z wodorem [Lignocellulose processing – The first stage of green energy, chemistry together with hydrogen],” in K. Kropiwiec and M. Szala (eds.) Wybrane zagadnienia z zakresu ochrony środowiska i energii odnawialnej [Selected issues in the field of environmental protection and renewable energy]. Lublin: Wydaw. Nauk. TYGIEL pp. 54–72.
  • Sun, X. et al. (2021) “Recent advances in hydrodynamic cavitation-based pretreatments of lignocellulosic biomass for valorization,” Bioresource Technology, 345, 126251. Available at: https://doi.org/10.1016/j.biortech.2021.126251.
  • Suthar, S. et al. (2022) “Enhanced biogas production in dilute acid-thermal pretreatment and cattle dung biochar mediated bio-methanation of water hyacinth,” Fuel, 307, 121897. Available at: https://doi.org/10.1016/j.fuel.2021.121897.
  • Taherzadeh, M.J. and Karimi, K. (2008) “Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: A review,” International Journal of Molecular Sciences, 9, pp. 1621–1651. Available at: https://doi.org/10.3390/ijms9091621.
  • Tomaszewska-Krojańska, D. (2016) “Zagospodarowanie odpadów z biogazowni rolniczych Wybrane zagadnienia z zakresu ochrony środowiska i energii odnawialnej [Management of waste from agricultural biogas plants],” in K. Kropiwiec and M. Szala (eds.) Wybrane zagadnienia z zakresu ochrony środowiska i energii odnawialnej [Selected issues in the field of environmental protection and renewable energy]. Lublin: Wydawnictwo Naukowe TYGIEL, pp. 195–196.
  • Vassilev, S.V., Baxter, D. and Vassileva, C.G. (2013) “An overview of the behaviour of biomass during combustion: Part I. Phase-mineral transformations of organic and inorganic matter,” Fuel, 112(3), pp. 391–449. Available at: https://doi.org/10.1016/j.fuel.2013.05.043.
  • Wu, J. et al. (2018) “Release of cell wall phenolic esters during hydrothermal pretreatment of rice husk and rice straw,” Biotechnology for Biofuels, 11, 162. Available at: https://doi.org/10.1186/s13068-018-1157-1.
  • Yu, G. et al. (2010) “Pre-treatment of rice straw by a hot-compressed water process for enzymatic hydrolysis,” Applied Biochemistry and Biotechnology, 160(2), pp. 539–551. Available at: https://doi.org/10.1007/s12010-008-8420-z.
  • Zhang, K. et al. (2019) “A sustainable approach for efficient conversion of lignin into biodiesel accompanied by biological pretreatment of corn straw,” Energy Conversion and Management, 11(199), 111928. Available at: https://doi.org/10.1016/j.enconman.2019.111928.
  • Zhuang, X. et al. (2016) “Liquid hot water pretreatment of lignocellulosic biomass for bioethanol production accompanying with high valuable products,” Bioresource Technology, 199, pp. 68–75. Available at: https://doi.org/10.1016/j.biortech.2015. 08.051.
  • Zieliński, M. et al. (2019a) “Cavitation-based pretreatment strategies to enhance biogas production in a small-scale agricultural biogas plant,” Energy for Sustainable Development, 49, pp. 21–26. Available at: https://doi.org/10.1016/j.esd.2018.12.007.
  • Zieliński, M. et al. (2019b) “Comparison of ultrasonic and hydrothermal cavitation pretreatments of cattle manure mixed withstraw wheat on fermentative biogas production,” Waste and Biomass Valorization, 10(4), pp. 747–754. Available at: https://doi.org/10.1007/s12649-017-9977-y.
  • Zou, S. et al. (2016) “Enhancement of biogas production in anaerobic co-digestion by ultrasonic retreatment,” Energy Conversion and Management, 112, pp. 226–235. Available at: http://dx.doi.org/10.1016/j.enconman.2015.12.087.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2e049d35-2260-4edc-b310-8b3bd551bed0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.