PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A physically based constitutive model of Ti-6Al-4 V and application in the SPF/DB process for a pyramid lattice sandwich panel

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The physically based constitutive modeling, simulation and experimental of a superplastic forming and diffusion bonding (SPF/DB) process were studied for the manufacture of a pyramid lattice Ti-6Al-4 V sandwich panel structure. The high-temperature deformation behaviors of Ti-6Al-4 V were studied using uniaxial tensile tests at various temperatures 860  – 950 °C and strain rates 0.0001 s−1 ~ 0.01 s−1, corresponding microstructures were observed using optical microscope (OM) and Electron Backscattered Diffraction (EBSD). Based on obtained flow behavior and microstructure, a set of physically based constitutive equations of the Ti-6Al-4 V was established and used to simulate the superplastic forming for a pyramid lattice sandwich panel. The thinning ratios, dislocation densities, grain sizes and damage distributions of the sandwich panels were successfully predicted by the finite element (FE) simulation. A pyramid lattice Ti-6Al-4 V alloy sandwich panel with good dimensional accuracy and mechanical properties was manufactured by the SPF/DB process at 920 °C with a gas loading path of 0.0005 MPa/s. The maximum thickness thinning ratio, damage factor and relative grain size at the ribs of the sandwich panel were 26.3%, 6.7% and 0.94, respectively. The established constitutive model aids the FE simulations of SPF/DB manufacture of sandwich panels’ structure enabling both macro- and micro-properties to be synergistically controlled and guides the practical process optimizations.
Rocznik
Strony
366--382
Opis fizyczny
Bibliogr. 35 poz., rys., wykr.
Twórcy
autor
  • College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
autor
  • College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
autor
  • College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
autor
  • School of Engineering and Technology, China University of Geosciences (Beijing), Beijing 100083, China
autor
  • Mechanical Engineering Department, Dalian University of Technology, Dalian 116024, China
autor
  • College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Bibliografia
  • [1] Banhart J. Manufacture, characterisation and application of cellular metals and metal foams. Prog Mater Sci. 2001;46(6):559–632.
  • [2] Evans AG, Hutchinson JW, Fleck NA, et al. The topological design of multifunctional cellular metals. Prog Mater Sci. 2001;46(3):309–27.
  • [3] Kim T, Hodson HP, Lu TJ. Fluid-flow and endwall heat-transfer characteristics of an ultralight lattice-frame material. Int J Heat Mass Transf. 2004;47(6–7):1129–40.
  • [4] Lu TJ, Hess A, Ashby M. Sound absorption in metallic foams. J Appl Phys. 1999;85(11):7528–39.
  • [5] Xue Z, Hutchinson JW. Preliminary assessment of sandwich plates subject to blast loads. Int J Mech Sci. 2003;45(4):687–705.
  • [6] Park K, Lee S, Kim C, et al. Fabrication and electromagnetic characteristics of electromagnetic wave absorbing sandwich structures. Compos Sci Technol. 2006;66(3):576–84.
  • [7] Wieding J, Jonitz A, Bader R. The effect of structural design on mechanical properties and cellular response of additive manufactured titanium scaffolds. Materials. 2012;5(8):1336–47.
  • [8] Liu Z, Chen H, Xing S. Mechanical performances of metal-polymer sandwich structures with 3D-printed lattice cores subjected to bending load. Arch Civil Mech Eng. 2020;20(3):89.
  • [9] Wadley HNG. Multifunctional periodic cellular metals. Philos Trans. 1838;2006(364):31–68.
  • [10] Kooistra G. Compressive behavior of age hardenable tetrahedral lattice truss structures made from aluminium. Acta Mater. 2004;52(14):4229–37.
  • [11] Tan Z, Bai L, Bai B, et al. Fabrication of lattice truss structures by novel super-plastic forming and diffusion bonding process in a titanium alloy. Mater Des. 2016;92:724–30.
  • [12] Boyer R R, Froes F H S, Chen E Y. High performance metallic materials for cost-sensitive applications. Pennsylvania, America: A Publication of The Minerals, Metals & Materials Society. 2013.
  • [13] Xun YW, Tan MJ. Applications of superplastic forming and diffusion bonding to hollow engine blades. J Mater Process Technol. 2000;99(1):80–5.
  • [14] Li ZQ, Guo P. Application progress and development trendency of superplastic forming / diffusion bonding technology. Aviation Manufact Technol. 2010;08:32–5.
  • [15] Barnes AJ. Superplastic forming 40 years and still growing. J Mater Eng Perform. 2007;16(4):440–54.
  • [16] Derby B, Wallach ER. Joining methods in space: a theoretical model for diffusion bonding. Acta Astronaut. 1979;7(4–5):685–98.
  • [17] Han W, Zhang K, Wang G. Superplastic forming and diffusion bonding for honeycomb structure of Ti–6Al–4V alloy. J Mater Process Technol. 2007;183(2–3):450–4.
  • [18] Lin J. Selection of material models for predicting necking in superplastic forming. Int J Plast. 2003;19(4):469–81.
  • [19] Lin J, Cheong BH, Yao X. Universal multi-objective function for optimising superplastic-damage constitutive equations. J Mater Process Technol. 2002;125–126:199–205.
  • [20] Yang L, Wang B, Liu G, et al. Behavior and modeling of flow softening and ductile damage evolution in hot forming of TA15 alloy sheets. Mater Des. 2015;85:135–48.
  • [21] Yasmeen T, Shao Z, Zhao L, et al. Constitutive modeling for the simulation of the superplastic forming of TA15 titanium alloy. Int J Mech Sci. 2019;164:105178.
  • [22] Bai Q, Lin J, Dean TA, et al. Modelling of dominant softening mechanisms for Ti-6Al-4V in steady state hot forming conditions. Mater Sci Eng A. 2013;559:352–8.
  • [23] Alabort E, Putman D, Reed RC. Superplasticity in Ti–6Al–4V: characterisation, modelling and applications. Acta Mater. 2015;95:428–42.
  • [24] Zhang QC, Han YJ, Chen CQ. X-type ultralight lattice structure core (I): concept, material preparation and experiment. Chin Sci. 2009;39(06):1039–46.
  • [25] Wang J, Evans AG, Dharmasena K, et al. On the performance of truss panels with Kagomé cores. Int J Solids Struct. 2003;40(25):6981–8.
  • [26] Calamaz M, Coupard D, Girot F. A new material model for 2D numerical simulation of serrated chip formation when machining titanium alloy Ti–6Al–4V. Int J Mach Tools Manuf. 2008;48(3):275–88.
  • [27] Liu Z, Wang X, Jiao X, et al. Prediction of microstructure evolution during hot gas forming of Ti2AlNb-based alloy tubular component with square cross-section. Proc Manufact. 2018;15:1156–63.
  • [28] Mukherjee AK. An examination of the constitutive equation for elevated temperature plasticity. Mater Sci Eng. 2002;322(1–2):1–22.
  • [29] Avrami M. Granulation, phase change, and microstructure kinetics of phase change. J Chem Phys. 1941;9(2):177–84.
  • [30] Garrett R, Lin J, Dean T. An investigation of the effects of solution heat treatment on mechanical properties for AA 6xxx alloys: experimentation and modelling. Int J Plast. 2005;21(8):1640–57.
  • [31] Lin J. Fundamentals of materials modelling for metals processing technologies: theories and applications. Imperial College Press. 2015;2015:1–512.
  • [32] Wu Y, Wang D, Liu Z, et al. A unified internal state variable material model for Ti2AlNb-alloy and its applications in hot gas forming. Int J Mech Sci. 2019;164:105126.
  • [33] Ma ZY, Mishra RS. Cavitation in super plastic 7075Al alloys prepared via friction stir processing. Acta Mater. 2003;51(12):3551–69.
  • [34] Piekło J, Małysza M, Dańko R. Modelling of the material destruction of vertically arranged honeycomb cellular structure. Arch Civil Mech Eng. 2018;18(4):1300–8.
  • [35] Li J, Wang B, Huang H, et al. Behaviour and constitutive modelling of ductile damage of Ti-6Al-1.5Cr-2.5Mo-0.5Fe-0.3Si alloy under hot tensile deformation. J Alloys Compd. 2019;780:284–92.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2e044c87-62c0-48ff-b31d-9d762fc552c5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.