PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Atrazine toxicity in marine algae Chlorella vulgaris, in E. coli lux and gfp biosensor tests

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Toksyczność atrazyny w glonach Chlorella vulgaris oraz w biosensorowych testach E. coli z genami gfp i lux
Języki publikacji
EN
Abstrakty
EN
Atrazine (ATR) is a widely used chlorinated herbicide from the s-triazine group. Due to the widespread use of ATR, it leaks into the environment and is detected in drinking water, exceeding the WHO-acceptable concentration of atrazine in drinking water, which is 2 μg/L. The aim of our study was to determine toxicity, protein degradation and genotoxicity of ATR at concentrations of 10; 1; 0.1; 0.01 mg/L on Chlorella vulgaris and with the application of E. coli bioluminescent biosensor strains. We measured the content of chlorophyll a, b, carotenoids in Chlorella vulgaris and the inhibition of this algae culture growth. E. coli RFM443 strains with gene constructs grpE:luxCDABE, lac:luxCDABE, recA:luxCDABE and E. coli strain MM294 trc:luxCDABE were used to determine toxicity, degradation of cellular proteins and genotoxicity. On the base of the obtained results, we concluded that ATR in the tested concentrations shows a toxic effect in relation to Chlorella vulgaris. ATR is toxic and genotoxic in E. coli RFM443 strains with grpE, lac, recA promoters and causes degradation of cellular proteins. Moreover, we have detected ATR toxicity toward the GFP protein in E. coli strain MM294-GFP. Taking into account the toxicity and genotoxicity of ATR documented in our research and in the experiments of other authors, we conclude that the presence of this herbicide in surface waters and drinking water is a serious threat to living organisms.
PL
Atrazyna (ATR) to szeroko stosowany na całym świecie chlorowany herbicyd z grupy s-triazyn. Ze względu na powszechne stosowanie, ATR przedostaje się do środowiska i jest wykrywana w wodzie pitnej, przekraczając dopuszczalne przez WHO stężenie, które wynosi 2 μg/L. W przedstawionych badaniach określono toksyczność ATR w stężeniach 10; 1; 0.1; 0.01 mg/L na glonach Chlorella vulgaris oraz z zastosowaniem E. coli mikrobiologicznych biosensorów z genami reporterowymi gfp i lux. Toksyczność oszacowano na podstawie zawartości chlorofilu a, b, karotenoidów w Chlorella vulgaris oraz zahamowania wzrostu tej kultury alg. Szczepy E. coli RFM443 z konstruktami genowymi grpE:luxCDABE, lac:luxCDABE, recA:luxCDABE i szczep E. coli MM294 trc:luxCDABE wykorzystano do określenia toksyczności, degradacji białek komórkowych i genotoksyczności. W przeprowadzonych badaniach wykryto, że ATR w analizowanych stężeniach wykazuje działanie toksyczne w stosunku do Chlorella vulgaris. W przypadku ATR stwierdzono właściwości toksyczne i genotoksyczne oraz potencjał degradacji białek w szczepach E. coli RFM443 z promotorami grpE, lac, recA. Ponadto wykryto toksyczność ATR w stosunku do białka GFP w szczepie E. coli MM294-GFP. Biorąc pod uwagę udokumentowaną w badaniach własnych oraz w doświadczeniach innych naukowców toksyczność i genotoksyczność ATR, obecność tego herbicydu w wodach powierzchniowych i wodzie pitnej stanowi poważne zagrożenie dla organizmów żywych.
Rocznik
Strony
87--99
Opis fizyczny
Bibliogr. 41 poz., rys., tab., wykr.
Twórcy
  • Bialystok University of Technology, Faculty of Civil Engineering and Environmental Sciences, Department of Chemistry, Biology and Biotechnology, Bialystok, Poland
  • Bialystok University of Technology, Faculty of Civil Engineering and Environmental Sciences, Department of Chemistry, Biology and Biotechnology, Bialystok, Poland
autor
  •  Bialystok University of Technology, Department of Environmental Engineering Technology, Bialystok, Poland
  •  Institute of Agricultural and Food Biotechnology-State Research Institute, Laboratory of Biotechnology and Molecular Engineering, Warsaw, Poland
  • Bialystok University of Technology, Faculty of Civil Engineering and Environmental Sciences, Department of Chemistry, Biology and Biotechnology, Bialystok, Poland
  •  Department of Agri-Food Engineering and Environmental Management, Bialystok University of Technology, Bialystok, Poland
  •  Bialystok University of Technology, Department of Agricultural and Food Engineering and Environmental Management, Bialystok, Poland
  • Bialystok University of Technology, Faculty of Civil Engineering and Environmental Sciences, Department of Chemistry, Biology and Biotechnology, Bialystok, Poland
Bibliografia
  • 1. Akhtar, N., Khan, M. F., Tabassum, S. & Zahran, E. (2021). Adverse effects of atrazine on blood parameters, biochemical profile, and genotoxicity of snow trout (Schizothorax plagiostomus). Saudi Journal of Biological Sciences, 28, pp. 1999–2003. DOI:10.1016/j.sjbs.2021.01.001
  • 2. Ali, S.A., Mittal, D. & Kaur G. (2021). In situ monitoring of xenobiotics using genetically engineered whole cell based microbial biosensors: recent advances and outlook. World Journal of Microbiology and Biotechnology, 7, pp. 37–81. DOI:10.21203/rs.3.rs-264683/v1
  • 3. Bae, J. W., Seo, H. B., Belkin, S. & Gu M. B. (2020). An optical detection module-based biosensor using fortified bacterial beads for soil toxicity assessment. Analitical and Bioanalitical Chemistry, 412, pp. 3373–3381. DOI:10.1007/s00216-020-02469-z
  • 4. Barsanti, L. & Gualtieri, P. (2014). Algae. Anatomy, Biochemistry, and Biotechnology (2 ed). CRC Press. Taylor & Francis Group. DOI:10.1201/b16544
  • 5. Camuel, A., Guieysse, B., Alcántara, C., & Béchet, Q. (2017). Fast algal ecotoxicity assessment: influence of light intensity and exposure time on Chlorella vulgaris inhibition by atrazine and DCMU. Ecotoxicology and Environmental Safety, 140, pp. 141–147. DOI:10.1016/j.ecoenv.2017.02.013
  • 6. Chen, J., Liu, J., Wu, S., Liu, W., Xia, Y., Zhao, J., Yang, Y., Peng, Y. & Zhao, S. (2021). Atrazine promoted epithelial ovarian cancer cells proliferation and metastasis by inducing low dose reactive oxygen species (ROS). Iran Journal of Biotechnology, 19, pp. 2623 – 2635. DOI:10.30498/IJB.2021.2623
  • 7. Dębowski, M. (2018). The use of microalgae biomass in engineering and environmental protection technologies. Polish Journal of Natural Sciences, 27, pp. 151-164. DOI:10.3390/en14196025
  • 8. Fareed, A., Hussain, A., Nawaz, M., Imran, M., Ali, Z. & Haq, S. U. (2021). The impact of prolonged use and oxidative degradation of Atrazine by Fenton and photo-Fenton processes. Environmental Technology and Innovation, 24, pp. 18-32. 101840. DOPI:10.1016/j.eti.2021.101840
  • 9. Jiang, B., Li, G., Xing, Y., Zhang, D., Jia, J., Cui, Z., Luan, X. & Tang, H. (2017). A whole cell bioreporter assay for quantitative genotoxicity evaluation of environmental samples. Chemosphere, 184, pp. 384–392. DOI:10.1016/j.chemosphere.2017.05.159
  • 10. Kamaz, M., Jones, S. M., Qian, X., Watts, M. J., Zhang, W. & Wickramasinghe, S. R. (2020). Atrazine removal from municipal wastewater using a membrane bioreactor. International Journal of Environmental Research and Public Health, 17, pp. 2567-2578. DOI:10.3390/ijerph17072567
  • 11. Kopcewicz, J., Lewak, S., Jaworski, K., Tretyn, A., Gniazdowska, A., Szmidt-Jaworska, A., Kęsy, J., Gabryś, H., Szymańska, M., Hawrylak-Nowak, B., Strzałka, K., Ciereszko, I., Rychter, A. M. & Tyburski, J. (2020). Plant physiology Polish Scientific Publishers PWN, Warsaw, Poland. (in Polish).
  • 12. Lu, Q., Zhou, X., Liu, R., Shi, G., Zheng, N., Gao, G. & Wang, Y. (2023). Impacts of a bacterial algicide on metabolic pathways in Chlorella vulgaris. Ecotoxicology and Environmental Safety, 249, pp. 1–13. DOI:10.1016/j.ecoenv.2022.114451
  • 13. Majewska, M., Harshkova, D., Pokora, W., Baścik-Remisiewicz, A., Tułodziecki, S. & Aksmann, A. (2021). Does diclofenac act like a photosynthetic herbicide on green algae? Chlamydomonas reinhardtii synchronous culture-based study with atrazine as reference. Ecotoxicology and Environmental Safety, 208, 111630. DOI:10.1016/j.ecoenv.2020.111630
  • 14. Malcata, F. X. (2019). Marine macro- and microalgae: an overview. CRC Press Taylor & Francis Group. DOI:10.1201/9781315119441
  • 15. Matejczyk, M., Ofman, P., Dąbrowska, K., Świsłocka, R. & Lewandowski, W. (2020a). The study of biological activity of transformation products of dicoflenac and its interaction with chlorogenic acid. Journal of Environmental Sciences, 91, pp. 128–141. DOI:10.1016/j.jes.2020.01.022
  • 16. Matejczyk, M., Ofman, P., Dąbrowska, K., Świsłocka, R. & Lewandowski, W. (2020b). Evaluation of the biological impact of the mixtures of diclofenac with its biodegradation metabolites 4’-hydroxydiclofenac and 5-hydroxydiclofenac on Escherichia coli. DCF synergistic effect with caffeic acid. Archives of Environmental Protection, 46, pp. 32–53. DOI:10.24425/aep.2020.135760
  • 17. Matejczyk, M., Ofman, P., Dąbrowska, K., Świsłocka, R. & Lewandowski, W. (2020c). Synergistic interaction of diclofenac and its metabolites with selected antibiotics and amygdalin in wastewaters. Environmental Research, 186, 109511. DOI:10.1016/j.envres.2020.109511
  • 18. Matejczyk, M., Ofman, P., Parcheta, M., Świsłocka, R. & Lewandowski, W. (2022). The study of biological activity of mandelic acid and its alkali metal salts in wastewaters. Environmental Research, 205, 112429. DOI:10.1016/j.envres.2021.112429
  • 19. Melamed, S., Lalush, C., Elad, T., Yagur-Krol, S., Belkin, S. & Pedahzur, R. (2012). A bacterial reporter panel for the detection and classification of antibiotic substances: Detection and classification of antibiotics. Microbiology and Biotechnology, 5, pp. 536–548. DOI:10.1111/j.1751-7915.2012.00333.x
  • 20. Mofeed, J. & Moshleh, Y. (2013). Toxic responses and antioxidative enzymes activity of Scenedesmus obliquus exposed to fenhexamid and atrazine, alone and in mixture. Ecotoxicology and Environmental Safety, 95, pp. 234–240. DOI:10.1016/j.ecoenv.2013.05.023
  • 21. Moraskie, M., Roshid, H., O’Connor, G., Dikici, E., Zings, J. M., Deo, S. & Daunert, S. (2021). Microbial whole-cell biosensors: current applications, challenges, and future perspectives. Biosensors and Bioelectronics, 191, 113359. DOI:10.1016/j.bios.2021.113359
  • 22. Ozturk, M., Coskuner, K. A., Serdar, B., Atar, F. & Bilgili, E. (2022). Impact of white mistletoe (Viscum album ssp. abietis) infection severity on morphology, anatomy and photosynthetic pigment content of the needles of cilicican fir (Abies cilicica). Flora, 294, 152135. DOI:10.1016/j.flora.2022.152135
  • 23. Qian, H., Sheng, G., Liu, W., Lu, Y., Liu, Z. & Fu, Z. (2008). Inhibitory effects of atrazine on Chlorella vulgaris as assessed by real-time polymerase chain reaction. Environmental Toxicology and Chemistry, 27, pp. 182–187. DOI:10.1897/07-163.1
  • 24. Rojas-Villacorta, W., Rojas-Flores, S., De La Cruz-Noriega, M., Espino, H. C., Diaz, F. & Cardenas, M. G. (2022). Microbial biosensors for wastewater monitoring: mini review. Processes, 10, pp. 2-13. DOI:10.3390/pr10102002
  • 25. Roustan, A., Aye, M., De Meo, M. & Giorgio, C. D. (2014). Genotoxicity of mixtures of glyphosate and atrazine and their environmental transformation products before and after photoactivation. Chemosphere, 108, pp. 93-100. DOI:10.1016/j.chemosphere.2014.02.079
  • 26. Santos, K. C. & Martinez, C. B. R. (2014). Genotoxic and biochemical effects of atrazine and Roundups, alone and in combination, on the Asian clam Corbicula fluminea. Ecotoxicology and Environmental Safety, 100, pp. 7-14. DOI:10.1016/j.ecoenv.2013.11.014
  • 27. Shan, W., Hu, W., Wen, Y., Ding, X., Ma, X., Yan, W. & Xia, Y. (2021). Evaluation of atrazine neurodevelopment toxicity in vitro-application of hESC-based neural differentiation model. Reproductive Toxicology, 103, pp. 149-158. DOI:10.1016/j.reprotox.2021.06.009
  • 28. Silveyra, G. R., Medesani, D. A. & Rodríguez, E. M. (2022). Effects of the herbicide atrazine on Crustacean Reproduction. Mini-Review. Frontiers in Physiology, 13, pp. 1-5. DOI:10.3389/fphys.2022.926492
  • 29. Sivathanu, B. & Palaniswamy, S. (2012). Purification and characterization of carotenoids from green algae Chlorococcum humicola by HPLC-NMR and LC-MS-APCI. Biomedical Prevention and Nutrition, 2, pp. 276-282. DOI:10.1016/j.bionut.2012.04.006
  • 30. Song,Y., Jiang, B., Tian, S., Tang, H., Liu, Z., Li, C., Jia, J., Huang, W. E., Zhang, X. & Li, G. (2014). A whole cell bioreporter approach for the genotoxicity assessment of bioavailability of toxic compounds in contaminated soil in China. Environmental Pollution, 195, pp. 178–184. DOI:10.1016/j.envpol.2014.08.024
  • 31. Su, Y., Cheng, Z., Chou, Y., Lin, S., Gao, L., Wang, Z., Bao, R. & Peng, L. (2022). Biodegradable and conventional microplastics posed similar toxicity to marine algae Chlorella vulgaris. Aquatic Toxicology, 244, 106097. DOI:10.1016/j.aquatox.2022.106097
  • 32. Sun, C., Xu, Y., Hu, N., Ma, J., Sun, S., Cao, W., Klobučar, G., Hu, C. & Zhao, Y. (2020). To evaluate the toxicity of atrazine on the freshwater microalgae Chlorella sp. using sensitive indices indicated by photosynthetic parameters. Chemosphere, 244, 125514. DOI:10.1016/j.chemosphere.2019.125514
  • 33. Węgrzyn, A. & Mazur, R. (2020). Regulatory mechanisms of photosynthesis light reactions in higher plants. Postępy Biochemii (Advances in biochemistry), 66, pp. 134-42. (in Polish). DOI:10.18388/pb.2020_325
  • 34. Woutersen, M., Belkin, S., Brouwer, B., Wezel, A. P. & Heringa, M. B. (2011). Are luminescent bacteria suitable for online detection and monitoring of toxic compounds in drinking water and its sources? Analitical and Bioanalitical Chemistry, 400, pp. 915-929. DOI:10.1007/s00216-010-4372-6
  • 35. Xiong, J. Q., Kurade, M. B., Abou-Shanab, R. A. J., Ji, M. K., Choi, J., Kim, J. O. & Jeon, B. H. (2016). Biodegradation of carbamazepine using freshwater microalgae Chlamydomonas mexicana and Scenedesmus obliquus and the determination of its metabolic fate. Bioresources Technology, 205, pp. 183-90. DOI:10.1016/j.biortech.2016.01.038
  • 36. Yang, F., Gao, M., Lu, H., Wei, Y., Chi, H., Yang, T., Yuan, M., Fu, H., Zeng, W. & Liu, C. (2021). Effects of atrazine on chernozem microbial communities evaluated by traditional detection and modern sequencing technology. Microorganisms, 9, 1832. DOI:10.3390/microorganisms9091832
  • 37. Yang, H., Jiang, Y., Lu, K., Xiong, H., Zhang, Y. & Wei, W. (2021a). Herbicide atrazine exposure induce oxidative stress, immune dysfunction and WSSV proliferation in red swamp crayfish Procambarus clarkii. Chemosphere, 283, 131227. DOI:10.1016/j.chemosphere.2021.131227
  • 38. Zappi, D., Coronado, E., Soljan, V., Basile, G., Varani, G., Turems, M. & Giardi, M. (2021). A microbial sensor platform based on bacterial bioluminescence (luxAB) and green fluorescent protein (gfp) reporters for in situ monitoring of toxicity of wastewater nitrification process dynamics. Talanta, 221, pp. 1-8. DOI:10.1016/j.talanta.2020.121438
  • 39. Zhang, Y., Meng, D., Wang, Z., Guo, H. & Wang, Y. (2012). Oxidative stress response in two representative bacteria exposed to atrazine. FEMS Microbiology Letters, 334, pp. 95–101. DOI:10.1111/j.1574-6968.2012.02625.x
  • 40. Zhao, Y., Yunyang, L., Bao, H., Nan, J. & Xu, G. (2023). Rapid biodegradation of atrazine by a novel Paenarthrobacter ureafaciens ZY and its effects on soil native microbial community dynamic. Frontiers in Microbiology, 4, pp. 1-13. DOI:10.3389/fmicb.2022.1103168
  • 41. Zhu, Y., Elcin, E., Jiang, M., Li, B., Wang, H., Zhang, X. & Wang, Z. (2022). Use of whole-cell bioreporters to assess bioavailability of contaminants in aquatic systems. Frontiers in Chemistry, 10, 1018124. DOI:10.3389/fchem.2022.1018124
Uwagi
PL
Opracowane ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2e0065e9-a9e8-4585-84f3-f2cb14f290b5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.