PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Spark Plasma Sintered Mn-Al (Magnets) Production and Characterization with Experimental Design

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Mn-Al alloys are important alloys due to their magnetic properties and have been identified as permanent magnets. This alloy possesses magnetic properties and can be manufactured at a relatively low cost. Mn-Al alloys could be an alternative to rare earth magnets and hard ferrites and have a promising future. In this study, the effects of sintering temperature, holding time and pressure on densification, average grain size and magnetic properties of the SPS-ed Mn-Al alloys were observed. However, with the different sintering parameters, the magnetic phase τ phase could be achieved. To obtain the τ phase, different annealing methods were tried, yet samples heated to 650°C and air cooled exhibited magnetic properties. This sample was selected from various sintering parameters due to its high density of 99% N6 (800°C - 300 sec - 60 MPa) and has an average grain size of 137±18.1 µm. The uniqueness of this work is that statistical approaches such as Taguchi design of experiment (DOE) and regression were used for optimization of the manufacturing process.
Słowa kluczowe
EN
Twórcy
  • Istanbul Technical University, Department of Metallurgical and Materials Engineering, Istanbul, 34469, Turkey
  • Istanbul Technical University, Department of Metallurgical and Materials Engineering, Istanbul, 34469, Turkey
Bibliografia
  • [1] D.P. Hoydick, E.J. Palmiere, W.A. Soffa, On the formation of the metastable llo phase in manganese-aluminum-base permanent magnet materials 36, 2, 151-156 (1997).
  • [2] I.A. Radulov et al., Production of net-shape Mn-Al permanent magnets by electron beam melting, Addit. Manuf. 30, 100787 (2019).
  • [3] S.F. Marenkin, A. Ril, Al-Mn Hard Magnetic Alloys as Promising Materials for Permanent Magnets Al-Mn Hard Magnetic Alloys as Promising Materials for Permanent Magnets (Review), no. October, 2021.
  • [4] Q. Zeng, I. Baker, J.B. Cui, Z.C. Yan, Structural and magnetic properties of nanostructured Mn-Al-C magnetic materials 308, 214-226 (2007).
  • [5] J.J. Van Den Broek, H. Donkersloot, G. Van Tendeloo, J. Van Landuyt, Phase transformations in pure and carbon-doped Al45Mn55 alloys, Acta Metall. 27, 9, 1497-1504 (1979).
  • [6] E. Fazakas, L.K. Varga, F. Mazaleyrat, Preparation of nanocrystalline Mn-Al-C magnets by melt spinning and subsequent heat treatments 435, 611-613 (2007).
  • [7] S. Zhao, Y. Wu, J. Zhy, Y. Jia, Evolution of Intrinsic Magnetic Properties in L10 Mn-Al Alloys Doped with Substitutional Atoms and Correlated Mechanism : Experimental and Theoretical Studies Evolution of Intrinsic Magnetic Properties in L10 Mn-Al Alloys Doped with Substitutional Atoms and Correlated Mechanism : Experimental and Theoretical, no. June, 2019.
  • [8] T. Mix, F. Bittner, K. Müller, L. Schultz, T.G. Woodcock, Acta Materialia Alloying with a few atomic percent of Ga makes MnAl thermodynamically stable 128, 160-165 (2017).
  • [9] Y. Chen et al., Magnetic and microstructural properties of anisotropic MnBi magnets compacted by spark plasma sintering, J. Alloys Compd. 830, 154605 (2020).
  • [10] I. Janotová et al., Formation of magnetic phases in rapidly quenched Mn-Based systems, J. Alloys Compd. 749, 1, 128-133 (2018).
  • [11] V. Tang Nguyen, F. Calvayrac, A. Bajorek, N. Randrianantoandro, Mechanical alloying and theoretical studies of MnAl(C) magnets, J. Magn. Magn. Mater. 462, C, 96-104 (2018).
  • [12] S. Zhao et al., Stabilization of τ-phase in carbon-doped MnAl magnetic alloys, J. Alloys Compd. 755, 257-264 (2018).
  • [13] L. Feng, J. Freudenberger, T. Mix, K. Nielsch, T. George, Acta Materialia Rare-earth-free MnAl-C-Ni permanent magnets produced by extrusion of powder milled from bulk, Acta Mater. 199, 155-168 (2020).
  • [14] T. Sivaprakasam, Analyses of surface roughness by turning proces using Taguchi method, January, 2007.
  • [15] N. Raghunath, P.M.P. Ã, Improving accuracy through shrinkage modelling by using Taguchi method in selective laser sintering 47, 985-995 (2007).
  • [16] N. Kumar, H. Kumar, J. Singh, Experimental investigation of process parameters for rapid prototyping technique (selective laser sintering ) to enhance the part quality of prototype by Taguchi method 23, 352-360 (2016).
  • [17] D. Palanisamy, C. Srivastava, G. Madras, K. Chattopadhyay, High-temperature transformation pathways for metastable ferro-magnetic binary Heusler (Al-55 at.% Mn) alloy, J. Mter. Sci. 52, 7, 4109-4119 (2017).
  • [18] J.B.Y.J.Z. Wei, Z.G. Song, Y.B. Yang, S.Q. Liu, H.L. Du, J.Z. Han, D. Zhou, C.S. Wang, Y.C. Yang, A. Franz, D. Többens, τ-MnAl with high coercivity and saturation magnetization 127113, no. December 2014.
  • [19] P. Saravanan, V.T.P. Vinod, Č. Miroslav, A. Selvapriya, D. Chakravarty, S.V. Kamat, Processing of Mn-Al nanostructured magnets by spark plasma sintering and subsequent rapid thermal annealing, J. Magn. Magn. Mater. 374, 427-432 (2015).
  • [20] Z.W. Liu, C. Chen, Z.G. Zheng, B.H. Tan, R.V Ramanujan, Phase transitions and hard magnetic properties for rapidly solidified MnAl alloys doped with C, B, and rare earth elements, 2333-2338 (2012).
Uwagi
1. The authors thank Asst. Prof. Dr. Nuri Solak for his contribution for XRD studies, Dr. Burak Cagri Ocak in SPS studies, Eymen Konyali and Bengi Su Yilmaz for their support.
2. Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2df9c04a-1058-486b-b747-277d60679883
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.