PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of ultrasonic field on methane fermentation process: Review

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
24th Polish Conference of Chemical and Process Engineering, 13-16 June 2023, Szczecin, Poland. Guest editor: Prof. Rafał Rakoczy
Języki publikacji
EN
Abstrakty
EN
One important aspect of the process of anaerobic stabilisation of sewage sludge in medium and large sewage treatment plants, in addition to sludge mineralisation, is the acquisition of a valuable source of energy, which is biogas. There are well-known methods of intensifying the process of methane fermentation by subjecting sludge to disintegration using physical factors, i.e. ultrasonic field. Acetate production is the rate-limiting step in the acetate consumption pathway and affects the efficiency of the anaerobic stabilisation process. The product of the first stage of the process is also the substrate for the next stage. Therefore, it is advisable to subject sewage sludge to disintegration, which increases its susceptibility to biodegradation. Sludge modification with the above-mentioned method causes a significant increase in the concentration of organic substances in the supernatant liquid. The reflection of the physical and chemical transformations of sludge in the disintegration processes is the change in their structure expressed by the increase in the degree of particle dispersion. The disintegration of sludge using sonolysis is an effective process solution, both in terms of technology and energy, in terms of obtaining biogas, which is a valuable source of energy.
Rocznik
Strony
art. no. e35
Opis fizyczny
Bibliogr. 163, rys., tab.
Twórcy
  • Czestochowa University of Technology, Faculty of Infrastructure and Environment, Dąbrowskiego 73, 42-201, Czestochowa, Poland
Bibliografia
  • 1. Alagöz B.A., Yenigün O., Erdinçler A. 2018. Ultrasound assisted biogas production from co-digestion of wastewater sludges and agricultural wastes: Comparison with microwave pre-treatment. Ultrason. Sonochem., 40(B), 193–200. DOI: 10. 1016/j.ultsonch.2017.05.014.
  • 2. Almukhtar R.S., Alwasiti A.A., Naser M.T., 2012. Enhancement of biogas production and organic reduction of sludge by different pretreatment processes. Iraqi J. Chem. Pet. Eng., 13, 19–31. DOI: 10.31699/IJCPE.2012.1.3.
  • 3. Amin F.R., Khalid H., El-mashad H.M., 2021. Functions of bacteria and archaea partici-pating in the bioconversion of organic waste for methane production. Sci. Total Environ., 763, 143007. DOI: 10.1016/j.scitotenv.2020.143007.
  • 4. Appels L., Baeyens J., Degrève J., Dewil R., 2008. Principles and potential of the anaero-bic digestion of waste-activated sludge. Prog. Energy Combust. Sci., 34, 755–781. DOI: 10.1016/j.pecs.2008.06.002.
  • 5. Azarmanesh R., Qaretapeh M.Z., Zonoozi M.H., Ghiasinejad H., Zhang Y., 2023. Anae-robic co-digestion of sewage sludge with other organic wastes: A comrehensive review focusing on selection criteria, operational conditions, and microbiology. Chem. Eng. J. Adv., 14, 100453. DOI: 10.1016/j.ceja.2023.100453.
  • 6. Baek G., Kim J., Kim J., Lee C., 2018. Role and potential of direct interspecies electron transfer in anaerobic digestion. Energies, 11, 107. DOI: 10.3390/en11010107.
  • 7. Bhatia S.K., Yang Y.-H., 2017. Microbial production of volatile fatty acids: current status and future perspectives. Rev. Environ. Sci. Bio/Technol., 16, 327–345. DOI: 10.1007/s11157-017-9431-4.
  • 8. Bień B., Bień J.D., Macherzyński B., 2023. The effect of selected methods of conditioning of digested sewage sludge on the content of organic and biogenic compounds in sludge liquids. Desalin. Water Treat., 288, 256–264. DOI: 10.5004/dwt.2023.29395.
  • 9. Bień J., Matysiak B., Wystalska K., 1999. Stabilizacja i odwadnianie osadów ściekowych. Wydawnictwo Politechniki Częstochowskiej, Częstochowa.
  • 10. Bień J., Stępniak L., Wolny L., 1995. Ultradźwięki w dezynfekcji wody i przygotowaniu osadów ściekowych przed ich odwadnianiem. Wydawnictwo Politechniki Częstochowskiej, Częstochowa.
  • 11. Bień J., Zawieja I., Wolski P., 2005. Otrzymywanie biogazu z osadów ściekowych – metody intensyfikacji. Konferencja Naukowo-Techniczna: Zintegrowane, inteligentne systemy wykorzystania energii odnawialnej. Wydawnictwo Politechniki Częstochowskiej, Częstochowa – Podlesice.
  • 12. Borowski S., Boniecki P., Kubacki P., Czyzowska A., 2018. Food waste co-digestion with slaughterhouse waste and sewage sludge: digestate conditioning and supernatant quality. Waste Manage., 74, 158–167. DOI: 10.1016/j.wasman.2017.12.010.
  • 13. Boruszko D., 2018. Applying ultrasonic in the PAHs degradation in sewage sludge. Desalin. Water Treat., 134, 15–22. DOI:10.5004/dwt.2018.22539.
  • 14. Boruszko D., 2020. Influence of sonication on changes in micro-and macro-elements content and availability of organic matter in stabilized sewage sludge used for agricultu-ral purposes. Desalin. Water Treat., 199, 57–65. DOI: 10.5004/dwt.2020.25848.
  • 15. Bourgrier C., Carrére H., Delgenés J.P., 2005. Solubilisation of waste-activated sludge by ultrasonic treatment. Chem. Eng. J., 106, 163–169. DOI: 10.1016/j.cej.2004.11.013.
  • 16. Buraczewski G., 1989. Fermentacja metanowa. Wydawnictwo Naukowe PWN, Warszawa.
  • 17. Buraczewski G., Bartoszek B., 1990. Biogaz. Wytwarzanie i wykorzystanie. Wydawnictwo Naukowe PWN, Warszawa.
  • 18. Cai M.Q., Hu J.Q., Wells G., Seo Y., Spinney R., Ho S.H., Dionysiou D.D., Su J., Xiao R., Wei Z., 2018. Understanding mechanisms of synergy between acidification and ultraso- und treatments for activated sludge dewatering: From bench to pilot-scale investigation. Environ. Sci. Technol., 52, 4313–4323. DOI: 10.1021/acs.est.8b00310.
  • 19. Castro M.D.L.D., Capote F.R.P., 2007. Analytical application of ultrasound. Elsevier Science.
  • 20. Cheeke J., 2002. Fundamentals and application of ultrasonic waves. CRC Press, LLC, Boca Raton, Florida, USA.
  • 21. Chen Y., Cheng J.J., Creamer K.S., 2008. Inhibition of anaerobic digestion process: A review. Bioresour. Technol., 99, 4044–4064. DOI: 10.1016/j.biortech.2007.01.057.
  • 22. Cheng J., Li H., Ding L., Zhou J., Song W., Li Y.-Y., Lin R., 2020. Improving hydrogen and methane co-generation in cascading dark fermentation and anaerobic digestion: The effect of magnetite nanoparticles on microbial electron transfer and syntrophism. Chem. Eng. J., 397, 125394. DOI: 10.1016/j.cej.2020.125394.
  • 23. Cheung H.M., Kurup S., 1994. Sonochemical destruction of CFC 11 and CFC 113 in dilu-te aqueous solution. Environ. Sci. Technol., 28, 1619–1622. DOI: 10.1021/es00058a014.
  • 24. Chmiel A., 1998. Biotechnologia: podstawy mikrobiologiczne i biochemiczne. Wydawnictwo Naukowe PWN, Warszawa.
  • 25. Choromański P., Łebkowska M., 2008. Microbiological tests in the process of methane fermentation. Gas Water and Sanitary Technology, 11, 19–23.
  • 26. Chu C.P., Bea-Ven C., Liao G.S., Jean D.S., Lee D.J., 2001. Observations on changes in ultrasonically treated waste activated sludge. Water Res., 35, 1038–1046. DOI: 10.1016/S0043-1354(00)00338-9.
  • 27. Cichowicz K., 2007. Ultrasonic disintegration of sewage sludge, sewage treatment and processing of sewage sludge. Publishing House of the University of Zielona Góra, 13, 133-138.
  • 28. Demirel B, Yenigün O., 2022. Two-phase anaerobic digestion processes: a review. J. Chem. Technol. Biotechnol., 77, 743–755. DOI: 10.1002/jctb.630.
  • 29. Djandja O.S., Yin L.-X., Wang Z.-C., Duan P.-G., 2021. From wastewater treatment to resources recovery through hydrothermal treatments of municipal sewage sludge: A critical review. Process. Saf. Environ. Prot., 151, 101–127. DOI: 10.1016/j.psep.2021.05.006.
  • 30. Donoso-Bravo A., Pérez-Elvira S.I., Fdz-Polanco F., 2010. Application of simplified mo-dels for anaerobic biodegradability tests. Evaluation of pre-treatment processes. Chem. Eng. J., 160, 607–614. DOI: 10.1016/j.cej.2010.03.082.
  • 31. Duarte M.S., Salvador A.F., Cavaleiro A.J., Stams A.J.M., Pereira M.A., Alves M.M., 2020. Multiple and flexible roles of facultative anaerobic bacteria in microaerophilic oleate degradation. Environ. Microbiol., 22, 3650–3659. DOI: 10.1111/1462-2920.15124.
  • 32. Dudek J., Zaleska-Bartosz J., 2010. Pozyskiwanie biogazu i wykorzystanie do celów energetycznych. Problemy Ekologii, 14(1), 13–16.
  • 33. Dymaczewski Z., Sozański M., Oleszkiewicz J., 1995. Poradnik eksploatatora oczyszczalni ścieków. Polskie Zrzeszenie Inżynierów i Techników Sanitarnych – OddziałPoznański, Poznań.
  • 34. Enebe N.L., Chigor C.B., Obileke K., Lawal M.S., Enebe M.C., 2023. Biogas and syngas production from se-wage sludge: A sustainable source of energy generation. Methane, 2, 192–217. DOI: 10.3390/methane2020014.
  • 35. Erden G., Filibeli A., 2010. Ultrasonic pre-treatment of biological sludge: consequences for disintegration, anaerobic biodegradability, and filterability. J. Chem. Technol. Biotechnol., 85, 145–150. DOI: 10.1002/jctb.2298.
  • 36. Fang H.H.P., Zhu H., Zhang T., 2006. Phototrophic hydrogen production from glucose by pure and co-cultures of Clostridium butyricum and Rhodobacter sphaeroides. Int. J. Hydrogen Energy, 31, 2223–2230. DOI: 10.1016/j.ijhydene.2006.03.005.
  • 37. Feng K., Li H., Zheng C., 2018. Shifting product spectrum by pH adjustment during long-term continuous anaerobic fermentation of food waste. Bioresour. Technol., 270, 180–188. DOI: 10.1016/j.biortech.2018.09.035.
  • 38. Foladori P., Bruni L., Andreottola G., Ziglio G., 2007. Effects of sonication on bacteria viability in wastewater treatment plants evaluated by flow cytometry–Fecal indicators, wastewater and activated sludge. Water Res., 41, 235–243. DOI: 10.1016/j.watres.2006.08.021.
  • 39. Gallipoli A., Braguglia C.M., 2012. High-frequency ultrasound treatment of sludge: Combined effect of surfactants removal and floc disintegration. Ultrason. Sonochem., 19, 864–871. DOI: 10.1016/j.ultsonch.2011.12.014.
  • 40. Gao N., Kamran K., Quan C., Williams P., 2020. Thermochemical conversion of sewage sludge: A critical review. Prog. Energy Combust. Sci., 79, 100843. DOI: 10.1016/j.pecs.2020.100843.
  • 41. Garlicka A., Żubrowska-Sudoł M., 2017. The effectiveness of the organic compounds released due to the hydrodynamic disintegration of sewage sludge. Inż. Ekolog., 18(3), 47–55. DOI: 10.12912/23920629/70257.
  • 42. Gerardi M.H., 2003. The microbiology of anaerobic digesters. John Wiley & Sons, Inc., Hoboken, New Jersey, USA. DOI: 10.1002/0471468967.
  • 43. Gherghel A.,Teodosiu C., De Gisi S.J., 2019. A review on wastewater sludge valorisation and its challenges in the context of circular economy. J. Cleaner Prod., 228, 244–263. DOI: 10.1016/j.jclepro.2019.04.240.
  • 44. Gianico A., Braguglia C.M., Gallipoli A., Mininni G., 2013. State of the art and perspectives of ultrasound application for sewage sludge processing, In: Quaderni de “La Ricerca scientifica", 120. Available at: https://www.researchgate.net/publication/ 264126925.
  • 45. Gonze E., Pillot S., Valette E., Gonthier Y., Bernis A., 2003. Ultrasonic treatment of an aerobic activated sludge in a batch reactor. Chem. Eng. Process. Process Intensif., 42, 965–975. DOI: 10.1016/S0255-2701(03)00003-5.
  • 46. Graczyk M., Sadecka Z., 1993. Persystencja i toksyczność wybranych insektycydów w warunkach fermentacji metanowej. Wydawnictwo Wyższej Szkoły Inżynierskiej w Zielonej Górze, Zielona Góra.
  • 47. Grönroos A., Kyllönen H., Korpijärvi K., Pirkonen P., Paavola T., Jokela J., Rintala J., 2005. Ultrasound assisted metod to increase soluble chemical oxygen demand (SCOD) of sewage sludge for digestion. Ultrason. Sonochem., 12, 115–120. DOI: 10.1016/j.ultsonch.2004.05.012.
  • 48. Guo X., Zhang Y., Guo Q., Zhang R., Wang C., Yan B., Lin F., Chen G., 2021. Evaluation on energetic and economic benefits of the coupling anaerobic digestion and gasification from agricultural wastes. Renew. Energy, 176, 494–503. DOI: 10.1016/j.renene.2021.05.097.
  • 49. Harirchi S., Wainaina S., Sar T., Nojoumi S.A., Parchami M., Parchami M., Varjani S., Khanal S.K., Wong J., Awasthi M.K., Taherzadeh M.J., 2022. Microbiological insights into anaerobic digestion for biogas, hydrogen or volatile fatty acids (VFAs): a review. Bioengineered, 13, 6521–6557. DOI: 10.1080/21655979.2022.2035986.
  • 50. Hartmann L., 1996. Biologiczne oczyszczanie ścieków. Wydawnictwo Instalator Polski, Warszawa.
  • 51. Heidrich Z., Niścier A., 1999. Stabilizacja beztlenowa osadów ściekowych. Wodociągi i Kanalizacja, 4, Wydawnictwa ZGPZI-iTS, Warszawa.
  • 52. Houtmeyers S., Degrève J., Willems K., Dewil R., Appels L., 2014. Comparing the influence of low power ultrasonic and microwave pre-treatments on the solubilisation and semi-continuous anaerobic digestion of waste activated sludge. Bioresour. Technol., 171, 44–49. DOI: 10.1016/j.biortech.2014.08.029.
  • 53. Huan L., Yiying J., Mahar R.B., Zhiyu W., Yongfeng N., 2009. Effects of ultrasonic disin-tegration on sludge microbial activity and dewaterability. J. Hazard. Mater., 161, 1421–1426. DOI: 10.1016/j.jhazmat.2008.04.113.
  • 54. Huiru Z., Yunjun Y., Liberti F., Pietro B., Fantozzi F., 2019. Technical and economic fea-sibility analysis of an anaerobic digestion plant fed with canteen food waste. Energy Convers. Manage., 180, 938–948. DOI: 10.1016/j.enconman.2018.11.045.
  • 55. Iglesias-Iglesias R., Campanaro S., Treu L., Kennes C., Veiga M.C., 2019. Valorization of sewage sludge for volatile fatty acids production and role of microbiome on acidogenic fermentation. Bioresour. Technol., 91, 121817. DOI: 10.1016/j.biortech.2019.121817.
  • 56. Imhoff K., 1996. Kanalizacja miast i oczyszczanie ścieków. Poradnik. Oficyna Wydawnicza PROJPRZEM EKO Sp. z o.o., Bydgoszcz.
  • 57. Iskra K., Miodoński S., 2014. Dezintegracja osadu nadmiernego – dobra praktyka czy konieczność? In: Tarczewska T.M., Kaźmierczak B. (Eds.), Interdyscyplinarne zagadnienia w inżynierii i ochronie środowiska, 4, 326–336.
  • 58. Jain S., Jain S., Wolf I.T., Lee J., Tong Y.W., 2015. A comprehensive review on operating parameters and different pretreatment methodologies for anaerobic digestion of municipal solid waste. Renew. Sustain. Energy Rev., 52, 142-154. DOI: 10.1016/j.rser.2015.07.091.
  • 59. Janosz-Rajczyk M., 2008. Badania wybranych procesów oczyszczania ścieków. Wydawnictwo Politechniki Częstochowskiej, Częstochowa.
  • 60. Jędrczak A., 2008. Biologiczne przetwarzanie odpadów. Wydawnictwo Naukowe PWN, Warszawa.
  • 61. Joyce E., Phull S.S., Lorimer J.P., Mason T.J., 2003. The development and evaluation of ultrasound for the treatment of bacterial suspensions. A study of frequency, power and sonication time on cultured Bacillus species. Ultrason. Sonochem., 2003, 10, 315–318. DOI: 10.1016/S1350-4177(03)00101-9.
  • 62. Kacprzak M., Neczaj E., Fijałkowski K., Grobelak A., Grosser A., Worwag M., Rorat A., Brattebo H., Almås Å., Singh B.R., 2017. Sewage sludge disposal strategies for sustainable development. Environ. Res., 156, 39–46. DOI: 10.1016/j.envres. 2017.03.010.
  • 63. Kidak R., Wilhelm A.-M., Delmas H., 2009. Effect of process parameters on the energy requirement in ultrasonical treatment of waste sludge. Chem. Eng. Process. Process Intensif., 48, 1346–1352. DOI: 10.1016/J.CEP.2009.06.010.
  • 64. Kim J., Park C., Kim T.-H., Lee M., Kim S., Kim S.-W., Lee J., 2003. Effects of various pretreatments for enhanced anaerobic digestion with waste activated sludge. J. Biosci. Bioeng., 95, 271–275. DOI: 10.1016/s1389-1723(03)80028-2.
  • 65. Krull R., Scheminski A., Burghard R., Hempel D.C., 2000. Redukcja osadów metodą dezintegracji chemicznej, In: Charakterystyka i zagospodarowanie osadów ściekowych. Mat. konf. Gdańsk 10–13 September 2000, Wydawnictwo Politechniki Gdańskiej, Gdańsk.
  • 66. Krupp M., Widmann R., 2009. Biohydrogen production by dark fermentation: Experiences of continuous operation in large lab scale. Int. J. Hydrogen Energy, 34, 4509–4516. DOI: 10.1016/j.ijhydene.2008.10.043.
  • 67. Kumar G., Ponnusamy V.K., Bhosale R.R., Shobana S., Yoon J.J., Bhatia S.K., Rajesh Banu J., Kim S.-H., 2019. A review on the conversion of volatile fatty acids to polyhydrox yalkanoates using dark fermentative effluents from hydrogen production. Bioresour. Technol., 287, 121427. DOI: 10.1016/j.biortech.2019.121427.
  • 68. Lanfranchi A., Tassinato G., Valentino F., Martinez G.A., Jones E., Gioia C., Bertin L., Cavinato C., 2022. Hydrodynamic cavitation pre-treatment of urban waste: Integration with acidogenic fermentation, PHAs synthesis and anaerobic digestion processes. Chemosphere, 301, 134624. DOI: 10.1016/j.chemosphere.2022.134624.
  • 69. Lewandowski W.M., 2007. Proekologiczne odnawialne źródła energii. Wydawnictwo Naukowe PWN, Warszawa.
  • 70. Li X., Guo S., Peng Y., He Y., Wang S., Li L., Zhao M., 2018. Anaerobic digestion using ultrasound as pretreatment approach: Changes in waste activated sludge, anaerobic dige-stion performances and digestive microbial populations. Biochem. Eng. J., 139, 139–145. DOI: 10.1016/j.bej.2017.11.009.
  • 71. Liu X., Wang Q., Tang Y., Pavlostathis S.G., 2021. Hydrothermal pretreatment of sewage sludge for enhanced anaerobic digestion: Resource transformation and energy balance. Chem. Eng. J., 410, 127430. DOI: 10.1016/j.cej.2020.127430.
  • 72. Lizama A.C., Figueiras C.C., Herrera R.R., Pedreguera A.Z., Ruiz Espinoza J.E., 2017. Effects of ultrasonic pretreatment on the solubilization and kinetic study of biogas production from anaerobic digestion of waste activated sludge. Int. Biodeterior. Biodegrad., 123, 1–9. DOI: 10.1016/j.ibiod.2017.05.020.
  • 73. Lorenzo-Toja Y., Vázquez-Rowe I., Amores M.J., Termes-Rifé M., Marín-Navarro D., Moreira M.T., Feijoo G., 2016. Benchmarking wastewater treatment plants under an eco-efficiency perspective. Sci. Total Environ., 566–567, 468–479. DOI: 10.1016/j.scitotenv.2016.05.110.
  • 74. Low E.W., Chase H.A., 1999. Reducing production of excess biomass during wastewater treatment. Water Res., 33, 1119–1132. DOI: 10.1016/S0043-1354(98)00325-X.
  • 75. Łomotowski J., Szpindor A., 1999. Nowoczesne systemy oczyszczania ścieków. Wydawnictwo ARKADY, Warszawa.
  • 76. Ma H., Zhang S., Lu X., Xi B., Guo X., Wang H., Duan J., 2012. Excess sludge reduction using pilot-scale lysis-cryptic growth system integrated ultrasonic/alkaline disintegration and hydrolysis/acidogenesis pretreatment. Bioresour. Technol., 116, 441– 447. DOI: 10.1016/j.biortech.2012.03.091.
  • 77. Macarie H., 2000. Overview of the application of anaerobic treatment to chemical and petrochemical wastewaters. Water Sci. Technol., 42, 201–214. DOI: 10.2166/wst.2000.0515.
  • 78. Magrel L., 2004. Prognozowanie procesu fermentacji metanowej mieszaniny osadów ściekowych oraz gnojowicy. Publishing House of Bialystok University of Technology, Bialystok.
  • 79. Malina J.J.F, Pohland F.G., 1992. Designing of Anaerobic Processes for the Treatment of Industrial and Municipal Wastes. Technomic Publishing Co. Inc., 7, 3–33.
  • 80. Marcinkowski T.A., 2010. Przeróbka osadów ściekowych w procesie wapnowania. Polskie Zrzeszenie Inżynierów i Techników Sanitarnych. Oddział Wielkopolski, Poznań.
  • 81. Merlin G., Boileau H., 2013. Anaerobic digestion of agricultural waste: State of the art and future trends, In: Torales A., Anaerobic Digestion: Types, Processes and Environmental Impact. Nova Science Publishers, Inc., New York, NY, USA.
  • 82. Miksch K., 1995. Biotechnologia środowiskowa. Biblioteka Fundacji Ekologicznej “Silesia”, Katowice.
  • 83. Müller J., Schwedes J., Battenberg S., Näveke R., Kopp J., Dichtl N., Krull R., Hempel D., 1996. Verbesserter Abbau von Klärschlämmen durch Zellaufschluß. AWT Abwas-sertechnik, 47(3), 48–52.
  • 84. Myszograj S., Płuciennik-Koropczuk E., 2023. Thermal disintegration of sewage sludge as a method of improving the biogas potential. Energies, 16, 559. DOI: 10.3390/en16010559.
  • 85. Nagarajan S., Jones R.J., Oram L., Massanet-Nicolau J., Guwy A., 2022. Intensification of acidogenic fermentation for the production of biohydrogen and volatile fatty acids – A perspective. Fermentation, 8, 325. DOI: 10.3390/fermentation8070325.
  • 86. Nagarajan S., Ranade V.V., 2021. Valorizing waste biomass via hydrodynamic cavitation and anaerobic digestion. Ind. Eng. Chem. Res., 60, 16577–16598. DOI: 10.1021/acs.iecr.1c03177.
  • 87. Nanzai B., Okitsu K., Takenaka N., Bandow H., Tajima N., Maeda Y., 2009. Effect of reaction vessel diameter on sonochemical efficiency and cavitation dynamics. Ultra- son. Sonochem., 16, 163–168. DOI: 10.1016/j.ultsonch.2008.05.016.
  • 88. Neczaj E., 2010. Ultradźwiękowe wspomaganie biologicznego oczyszczania odcieków wysypiskowych. Wydawnictwo Politechniki Częstochowskiej, Częstochowa.
  • 89. Neis U., Nickel K., Anna Lundén A., 2008. Improving anaerobic and aerobic degradation by ultrasonic disintegration of biomass. J. Environ. Sci. Health., Part A, 43, 1541–1545. DOI: 10.1080/10934520802293701.
  • 90. Nellenschulte T., Kayser R., 1997. Model odwadniania osadów. Międzynarodowa konferencja na temat gospodarki osadami, Osady ściekowe – odpad, czy surowiec? Wydawnictwo Politechniki Częstochowskiej, Częstochowa.
  • 91. Neumann P., González Z., Vidal G., 2017. Sequential ultrasound and low-temperature thermal pretreatment: Process optimization and influence on sewage sludge solubiliza-tion, enzyme activity and anaerobic digestion. Bioresour. Technol., 234, 178– 187. DOI: 10.1016/j.biortech.2017.03.029.
  • 92. Nickel K., Neis U., 2007. Ultrasonic disintegration of biosolids for improved biodegradation. Ultrason. Sonochem., 14, 450–455. DOI: 10.1016/j.ultsonch.2006.10.012.
  • 93. Nowak D., 2015. Zastosowanie ultradźwięków do odkażania osadów ściekowych. Inżynieria i Ochrona Środowiska, 18(4), 459–469.
  • 94. Nwokolo N., Mukumba P., Obileke K., Enebe M.J., 2020. Waste to energy: A focus on the impact of substrate type in biogas production. Processes, 8, 1224. DOI: 10.3390/pr8101224.
  • 95. Onyeche T.I., Schlafer O., Bormann H., Schröder C., Sievers M., 2002. Ultrasonic cell disruption of stabilised sludge with subsequent anaerobic digestion. Ultrasonics, 40, 31–35. DOI: 10.1016/S0041-624X(02)00087-2.
  • 96. Parawira W., Kudita I., Nyandoroh M.G., Zvauya R., 2005. A study of industrial anaerobic treatment of opaque beer brewery wastewater in a tropical climate using a full-scale UASB reactor seeded with activated sludge. Process. Biochem., 40, 593–599. DOI: 10.1016/j.procbio.2004.01.036.
  • 97. Park J.-H., Kang H.-J., Park K.-H., Park H.-D., 2018. Direct interspecies electron transfer via conductive materials: A perspective for anaerobic digestion applications. Bioresour. Technol., 254, 300–311. DOI: 10.1016/j.biortech.2018.01.095.
  • 98. Penaud V., Delgenès J., Moletta R., 1999. Thermo-chemical pretreatment of a microbial biomass: influence of sodium hydroxide addition on solubilization and anaerobic biodegradability. Enzyme Microb. Technol., 25, 258–263. DOI: 10.1016/S0141- 0229(99)00037-X.
  • 99. Pérez-Elvira S., Fdz-Polanco M., Plaza F.I., Garralón G., Fdz-Polanco F., 2009. Ultrasound pre-treatment for anaerobic digestion improvement. Water Sci. Technol., 60, 1525–1532. DOI: 10.2166/wst.2009.484.
  • 100. Podedworna J., Umiejewska K., 2008. Technologia osadów ściekowych. Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa.
  • 101. Policastro G., Giugliano M., Luongo V., Napolitano R., Fabbricino M., 2022. Enhancing photo fermentative hydrogen production using ethanol rich dark fermentation effluents. Int. J. Hydrogen Energy, 47, 117–126. DOI: 10.1016/j.ijhydene.2021.10.028.
  • 102. Prussi M., Padella M., Conton M., Postma E., Lonza L., 2019. Review of technologies for biomethane production and assessment of Eu transport share in 2030. J. Cleaner Prod., 222, 565–572. DOI: 10.1016/j.jclepro.2019.02.271.
  • 103. Qi G., Li C., Mei Y., Xu W., Shen Y., Gao X., 2020. A new strategy for nitrogen containing compounds recovery from gaseous products during sewage sludge pyrolysis under vacuum condition. J. Environ. Chem. Eng., 8, 104452. DOI: 10.1016/j.jece.2020.104452.
  • 104. Rak J., Wieczysty A., 1997. Niezawodna praca osadników wstępnych źródłem surowca do pozyskania energii w miejskich oczyszczalniach ścieków, In: Bien J.B. (Ed.), Osady ściekowe – odpad czy surowiec. Wydawnictwo Politechniki Częstochowskiej, Częstochowa, 76–83.
  • 105. Rodriguez-Leon J.A., de Carvalho J.C., Pandey A., Soccol C.R., Rodriguez- Fernández D.E., 2018. Kinetics of the solid-state fermentation process. In Pandey A., Larroche C., Soccol C.R. (Eds.), Current developments in biotechnology and bioengineering. Elsevier, 57–82.
  • 106. Roopnarain A., Rama H., Ndaba B., Bello-Akinosho M., Bamuza-Pemu E., Adeleke R., 2021. Unravelling the anaerobic digestion ‘black box’: Biotechnological approaches for process optimization. Renew. Sustain. Energy Rev., 152, 111717. DOI: 10.1016/j.rser.2021.111717.
  • 107. Sadecka Z., 2002. Toksyczność i biodegradacja insektycydów w procesie fermentacji metanowej osadów ściekowych. Oficyna Wydawnicza Uniwersytetu Zielonogórskiego, Zielona Góra.
  • 108. Saha O., Sultana A., Sarker N., Siddiqui A.R., Hossen F., Mukharjee S.K., 2017. Biomass as a renewable resource for energy and chemical products. Sci. J. Energy Eng., 5, 146–151. DOI: 10.11648/j.sjee.20170506.13.
  • 109. Sahinkaya S., 2015. Disintegration of municipal waste activated sludge by simultaneous combination of acid and ultrasonic pretreatment. Process Saf. Environ. Prot., 93, 201–205. DOI: 10.1016/j.psep.2014.04.002.
  • 110. Şahinkaya S., Sevimli M.F., 2013. Sono-thermal pre-treatment of waste activated sludge before anaerobic digestion. Ultrason. Sonochem., 20, 587–594. DOI: 10.1016/j.ultsonch.2012. 07.006.
  • 111. Sakaveli F., Petala M., Tsiridis V., Darakas E., 2021. Enhanced mesophilic anaerobic di-gestion of primary sewage sludge. Water, 13, 348. DOI: 10.3390/w13030348.
  • 112. Scarlat N., Dallemand J.-F., Fahl F., 2018. Biogas: Developments and perspectives in Europe. Renew. Energy, 129A, 457–472. DOI: 10.1016/j.renene.2018.03.006.
  • 113. Scarlat N., Dallemand J.-F., Monforti-Ferrario F., Banja M., Motola V., 2015. Renewable energy policy framework and bioenergy contribution in the European Union – An overview from National Renewable Energy Action Plans and Progress Reports. Renew. Sustain. Energy Rev., 51, 969–985. DOI: 10.1016/j.rser.2015.06.062.
  • 114. Scarlat N., Fahl F., 2019. Heat and power from biomass –Technology development report. EUR 29910 EN. Publications Office, European Commission, Joint Research Centre. DOI: 10.2760/919071.
  • 115. Schmitz U., Berger C.R., Orth H., 2000. Protein analysis as simple metod for the quantitative assessment of sewage sludge disintegration. Water Res., 34, 3682–3685. DOI: 10.1016/S0043-1354(00)00091-9.
  • 116. Shao L., Wang T., Li T., Lü F., He P., 2013. Comparison of sludge digestion under aerobic and anaerobic conditions with a focus on the degradation of proteins at mesophilic temperature. Bioresour. Technol., 140, 131–137. DOI: 10.1016/j.biortech.2013.04.081.
  • 117. Shirgaonkar I.Z., Pandit A.B., 1997. Degradation of aqueous solution of potassium, iodide and sodium cyanide in the presence of carbon tetrachloride. Ultrason. Sonochem., 4, 245–253. DOI: 10.1016/s1350-4177(97)00022-9.
  • 118. Simon J., 2013. Electron transport in facultative anaerobes, In: Roberts G.C.K. (Ed.), Encyclopedia of biophysics. Springer, Berlin, Heidelberg. DOI: 10.1007/978-3-642-16712-6_32.
  • 119. Śliwiński A., 2001. Ultradźwięki i ich zastosowania. Wydawnictwo WNT, Warszawa.
  • 120. Stier E., Fischer M., 1998. Podręczny poradnik eksploatacji oczyszczalni ścieków. Wydawnictwo Seidel-Przywecki.
  • 121. Tandukar M., Pavlostathis S.G., 2022. Anaerobic co-digestion of municipal sludge with fat-oil-grease (FOG) enhances the destruction of sludge solids. Chemosphere, 292, 133530. DOI: 10.1016/j.chemosphere.2022.133530.
  • 122. Tas D.O., Yangin-Gomec C., Olmez-Hanci T., Arikan O.A., Cifci D.I., Gencsoy E.B., Ekdal A., Ubay-Cokgor E., 2018. Comparative assessment of sludge pre-treatment techniques to enhance sludge dewaterability and biogas production. CLEAN – Soil Air Water, 46, 1700569. DOI: 10.1002/clen.201700569.
  • 123. Teng Y., Xu Y., Wang X., Christie P., 2019. Function of biohydrogen metabolism and related microbial communities in environmental. Front. Microbiol., 10, 106. DOI: 10.3389/fmicb.2019.00106.
  • 124. Tian T., Qiao S., Li X., Zhang M., Zhou J., 2017. Nano-graphene induced positive effects on methanogenesis in anaerobic digestion. Bioresour. Technol., 224, 41–47. DOI: 10.1016/j.biortech.2016.10.058.
  • 125. Tiehm A, Nickel K., Neis U., 1997. The use of ultrasound to accelerate the anaerobic digestion of sewage sludge. Water Sci. Technol., 36, 121–128. DOI: 10.1016/S0273-1223(97)00676-8.
  • 126. Tiehm A., Nickel K., Zellhorn M., Neis U., 2001. Ultrasonic waste activated sludge disintegration for improving anaerobic stabilization. Water Res., 35, 2003–2009. DOI: 10.1016/S0043-1354(00)00468-1.
  • 127. Tomczak-Wandzel R., Mędrzycka K., Cimochowicz-Rybicka M., 2009. Wpływ dezintegracji ultradźwiękowej na przebieg fermentacji metanowej, In: Ozonek J., Pawłowska M. (Eds.), Polska inżynieria środowiska pięć lat po wstąpieniu do Unii Europejskiej. T. 1., Monografie – Polska Akademia Nauk. Komitet Inżynierii Środowiska PAN, Lublin, 58, 331-337.
  • 128. Tsigkou K., Zagklis D., Parasoglou M., Zafiri C., Kornaros M., 2022. Proposed protocol for rate-limiting step determination during anaerobic digestion of complex substrates. Bioresour. Technol., 361, 127660. DOI: 10.1016/j.biortech.2022.127660.
  • 129. Tyagi V.K., Lo S.-L., 2011. Application of physico-chemical pretreatment methods to enhance the sludge disintegration and subsequent anaerobic digestion: an up to date review. Rev. Environ. Sci. Bio/Technol., 10, 215–242. DOI: 10.1007/s11157-011-9244-9.
  • 130. Vanwonterghem I., Evans P.N., Parks D.H., Jensen P.J., Woodcroft B.J., Hugenholtz P., Tyson G.W., 2016. Methylotrophic methanogenesis discovered in the archaeal phylum verstraetearchaeota. Nat. Microbiol., 1, 16170. DOI: 10.1038/nmicrobiol.2016.170.
  • 131. Vítezová M., Kohoutová A., Vítěz T., Hanišáková N., Kushkevych I., 2020. Methanogenic microorganisms in industrial wastewater anaerobic treatment. Processes, 8, 1546. DOI: 10.3390/pr8121546.
  • 132. Wang F., Ji M., Lu S., 2006. Influence of ultrasonic disintegration on the dewaterability of waste activated sludge. Environ. Prog., 25, 257–260. DOI: 10.1002/ep.10149.
  • 133. Wang H., Yang Z., Li X., Liu Y., 2020. Distribution and transformation behaviors of heavy metals and phosphorus during hydrothermal carbonization of sewage sludge. Environ. Sci. Pollut. Res., 27, 17109–17122. DOI: 10.1007/s11356-020-08098-4.
  • 134. Wang Q., Kuninobo M., Kakimoto K., Ogawa H.I., Kato Y., 1999. Upgrading of anaerobic digestion of waste activated sludge by ultrasonic pretreatment. Bioresour. Technol., 68, 309–313. DOI: 10.1016/S0960-8524(98)00155-2.
  • 135. Wang X., Qiu Z., Lu S., Ying W., 2010. Characteristics of organic, nitrogen and phosphorus species released from ultrasonic treatment of waste activated sludge. J. Hazard. Mater., 176, 35–40. DOI: 10.1016/j.jhazmat.2009.10.115.
  • 136. Ware A., Power N., 2017. Modelling methane production kinetics of complex poultry slaughterhouse wastes using sigmoidal growth functions. Renew. Energy, 104, 50–59. DOI: 10.1016/j.renene.2016.11.045.
  • 137. Wierzbicki T.L., 1996. Ćwiczenia laboratoryjne z technologii wody i ścieków. Wydawnictwo Uczelniane Uniwersytetu Technologiczno-Rolniczego w Bydgoszczy.
  • 138. Wójtowicz A., 2006. Dezintegracja osadu: wprowadzenie do zagadnienia. Forum Eksploatatora, 1(22), 34–38.
  • 139. Wolny L., 2005. Ultradźwiękowe wspomaganie procesu przygotowania osadów ściekowych do odwadniania. Wydawnictwo Politechniki Częstochowskiej, Częstochowa.
  • 140. Wolny L., Kamizela T., 2003. Technika dezintegracji ultra-
  • 141. dźwiękowej w technologii ścieków i osadów ściekowych. Ekologia i Technika, 11(1), 3–7.
  • 142. Wolny L., Kamizela T., Kowalczyk M., 2004. Skuteczność zagęszczania osadów poddawanych sonikacji. Konferencja Naukowo-Techniczna: Aktualne problemy gospodarki wodnościekowej. Wydawnictwo Politechniki Częstochowskiej, Ustroń, 291–298.
  • 143. Wolski P., Wolny L., Małkowski M., 2012. Changes in physical parameters of digested sludge submitted preconditioning. Proceedings of ECOpole, 6(2), 793–798.
  • 144. Wu L.-J., Higashimori A., Qin Y., Hojo T., Kubota K., Li Y.-Y., 2016. Comparison of hyper-thermophilic–mesophilic two-stage with single-stage mesophilic anaerobic digestion of waste activated sludge: Process performance and microbial community analysis. Chem. Eng. J., 290, 290–301. DOI: 10.1016/j.cej.2016.01.067.
  • 145. Xie R., Xing Y., Ghani Y.A., Ooi K., Ng S., 2007. Full-scale demonstration of an ultrasonic disintegration technology in enhancing anaerobic digestion of mixed primary and thickened secondary sewage sludge. J. Environ. Eng. Sci., 6, 533–541. DOI: 10.1139/S07-013.
  • 146. Xu Z.-X., Song H., Zhang S., Tong S.-Q., He Z.-X., Wang Q., Li B., Hu X., 2019. Co-hydrothermal carbonization of digested sewage sludge and cow dung biogas residue: Investigation of the reaction characteristics. Energy, 187, 115972. DOI: 10.1016/j.energy.2019.115972.
  • 147. Yan Y., Liu F., Gao J., Wan J., Ding J., Li T., 2022. Enhancing enzyme activity via low-intensity ultrasound for protein extraction from excess sludge. Chemosphere, 303, 134936. DOI: 10.1016/j.chemosphere.2022.134936.
  • 148. Yang Y., Zhang C., Hu Z., 2013. Impact of metallic and metal oxide nanoparticles on wastewater treatment and anaerobic digestion. Environ. Sci.: Process Impacts, 15, 39–48. DOI: 10.1039/C2EM30655G.
  • 149. Zawieja I., 2015. Konwencjonalne i hybrydowe metody dezintegracji osadów nadmiernych. Wydawnictwo Politechniki Częstochowskiej, Częstochowa.
  • 150. Zawieja I., Włodarczyk R, Kowalczyk M., 2019. Biogas generation from sonicated excess sludge. Water, 11, 2127. DOI:10.3390/w11102127.
  • 151. Zawieja I., Wolski P., 2013. Effect of hybrid method of excess sludge disintegration on the increase of their biodegradalibity. Environ. Prot. Eng., 39(2), 153–165.
  • 152. Zawieja I., Wolski P., Wolny L., 2010. Receiving of biogas from the wastes deposited on the storage yards. Proceedings of ECOpole, 4(2), 535–539.
  • 153. Zhang G., Zhang P., Yang J., Chen Y., 2007. Ultrasonic reduction of excess sludge from the activated sludge system. J. Hazard. Mater., 145, 515–519. DOI: 10.1016/j.jhazmat.2007.01.133.
  • 154. Zhang L., Tsui T.-H., Loh K.-C., Dai Y., Tong Y.W., 2022. Chapter 15 – Acidogenic fermentation of organic wastes for production of volatile fatty acids, In: Pandey A., Tong Y.W., Zhang L., Zhang J. (Eds.), Biomass, biofuels, biochemicals. Elsevier, 343–366. DOI: 10.1016/B978-0-323-90633-3.00005-5.
  • 155. Zhang Y., Xu S., Cui M., Wong J.W.C., 2019. Effects of diffeent thermal pretreatments on the biodegradability and bioaccessibility of sewage sludge. Waste Manage., 94, 68–76. DOI: 10.1016/j.wasman.2019.05.047.
  • 156. Zhao J., Hou T., Wang Q., Zhang Z., Lei Z., Shimizu K., Guo W., Ngo H.H., 2021. Application of biogas recirculation in anaerobic granular sludge system for multifunctional sewage sludge management with high efficacy energy recovery. Appl. Energy, 298, 117212. DOI: 10.1016/j.apenergy.2021.117212.
  • 157. Zhen G., Lu X., Kato H., Zhao Y., Li Y.Y., 2017. Overview of pretreatment strategies for enhancing sewage sludge disintegration and subsequent anaerobic digestion: Current advances, full-scale application and future perspectives. Renew. Sustainable Energy Rev., 69, 559–577. DOI: 10.1016/j.rser.2016.11.187.
  • 158. Zhu B., Gikas P., Zhang R., Lord J., Jenkins B., Li X., 2009. Characteristics and biogas production potential of municipal solid wastes pretreated with a rotary drum reactor. Bioresour. Technol., 100, 1122–1129. DOI: 10.1016/j.biortech.2008.08.024.
  • 159. Zielewicz E., 2010. Możliwości oceny skutków procesu dezintegracji. Zaawansowane technologie biologicznego oczyszczania ścieków komunalnych, Konferencja naukowo-techniczna, Zegrze, 21–22 April 2010. Wydawnictwo Seidel-Przywecki, 109–122.
  • 160. Zielewicz E., Sorys P., Janik M., Fukas – Płonka Ł., 2008. Hybrid disintegration as a method of improving the effects of sludge stabilization. Inżynieria i Ochrona Środowiska, 11(3), 397–409.
  • 161. Zielewicz-Madej E., Fukas-Płonka Ł., 2002. Dezintegracja ultradźwiękowa jako metoda intensyfikacji procesu fermentacji metanowej. Woda, ścieki, odpady w środowisku V: konferencja naukowo-techniczna “Oczyszczanie sěciekoěw – nowe trendy”, Zielona Goěra, 12-14 wrzesěnia 2002, 225–232.
  • 162. Zouagri R., Mameri A., Tabet F., Hadef A. 2020. Characterization of the combustion of the mixtures biogas-syngas at high strain rates. Fuel, 271, 117580. DOI: 10.1016/j.fuel.2020.117580.
  • 163. Zwietering M.H., Jongenburger I., Rombouts F.M, van’t Riet K., 1990. Modeling of the bacterial growth curve. Appl. Environ. Microbiol., 56, 1875–1881. DOI: 10.1128/aem.56.6.1875-1881. 1990.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2df7dd6a-04ad-40e1-8c20-d6ddc675b301
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.