Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Using conformal mapping techniques, superposition and analytic continuation, we derive analytic solutions to the problem of a screw dislocation interacting with a parabolic elastic inhomogeneity. The screw dislocation can be located anywhere either in the surrounding matrix or in the parabolic inhomogeneity or simply on the parabolic interface itself. We obtain explicit expressions for the two analytic functions in the image plane characterizing the elastic fields describing displacement and stresses in the two-phase composite. Using the Peach-Koehler formula, we also obtain the image force acting on the screw dislocation. The analytic function defined in the parabolic inhomogeneity in the physical plane can be interpreted in terms of real and image screw dislocations for any location of the real screw dislocation.
Czasopismo
Rocznik
Tom
Strony
219--235
Opis fizyczny
Bibliogr. 13 poz., rys. kolor.
Twórcy
autor
- School of Mechanical and Power Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
autor
- Department of Mechanical Engineering, University of Alberta, 10-203 Donadeo Innovation Centre for Engineering, Edmonton, Alberta Canada T6G 1H9
Bibliografia
- 1. J. Dundurs, Elastic interaction of dislocations with inhomogeneities, in: Mathematical Theory of Dislocations, T. Mura [ed.], American Society of Mechanical Engineers, New York, pp. 70–115, 1969.
- 2. K. Zhou, H.J. Hoh, X. Wang, L.M. Keer, J.H.L. Pang, B. Song, Q.J. Wang, A review of recent works on inclusions, Mechanic of Materials, 60, 144–158, 2013.
- 3. S.X. Gong, S.A. Meguid, A screw dislocation interacting with an elastic elliptical inhomogeneity, International Journal of Engineering Science, 32, 1221–1228, 1994.
- 4. T.C.T. Ting, Anisotropic Elasticity-Theory and Applications, Oxford University Press, New York, 1996.
- 5. X. Wang, L.J. Sudak, Interaction of a screw dislocation with an arbitrary shaped elastic inhomogeneity, ASME Journal of Applied Mechanics, 73, 206–211, 2006.
- 6. Y.Z. Chen, W.Z. Lin, Stress intensification at crack tips near parabolic notch, Theoretical and Applied Fracture Mechanics, 16, 243–254, 1991.
- 7. Y.T. Hu, X.H. Zhao, Green’s functions of two-dimensional anisotropic body with a parabolic boundary, Applied Mathematics and Mechanics, 17, 5, 393–402, 1996.
- 8. T.C.T. Ting, Y. Hu, H.O.K. Kirchner, Anisotropic elastic materials with a parabolic or hyperbolic boundary: a classical problem revisited, ASME Journal of Applied Mechanics, 68, 537–542, 2001.
- 9. C.Q. Ru, P. Schiavone, On the elliptic inclusion in anti-plane shear, Mathematics and Mechanics of Solids, 1, 327–333, 1996.
- 10. Y.V. Obnosov, A generalized Milne–Thomson theorem for the case of parabolic inclusion, Applied Mathematical Modelling, 33, 1970–1981, 2009.
- 11. X. Wang, P. Schiavone, Uniformity of stresses inside a parabolic inhomogeneity, Journal of Applied Mathematics and Physics, 71, 2, 48, 2020.
- 12. B.J. Chen, Z.M. Xiao, K.M. Liew, A screw dislocation interacting with a finite crack in a piezoelectric medium, International Journal of Engineering Science, 42, 1325–1345, 2004.
- 13. Z.M. Xiao, B.J. Chen, J. Luo, A generalized screw dislocation near a wedge-shaped magnetoelectroelastic bi-material interface, Acta Mechanica, 214, 261–273, 2010.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2df79796-1692-47ff-9c64-58d1a9c80429