Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The study aimed to evaluate the spatial distribution of soil pH, electrical conductivity (EC), and particle size distribution within a seven-hectare field in Los Baños Laguna, Philippines using the ordinary kriging method and to utilize the interpolated maps to delineate management zones. Fifty soil samples were collected from the surface layer at a depth of 0–20 cm using a random sampling technique. On the basis of the obtained results, it was found that the area has an acidic pH, medium-textured soil with low soluble salt content. Geostatistical analysis revealed that soil EC and clay content exhibited strong spatial dependence, while soil pH and silt were observed to have a moderate spatial dependence. In contrast, sand exhibited weak spatial dependence. The spherical model was identified as the optimal fit for soil pH, clay content, silt content, and sand content, while the exponential model was deemed most suitable for EC. Three distinct management zones (MZs) were delineated based on the spatial variability of the selected properties. MZ1, the largest zone covering 82.10% of the area, is characterized by a weakly acidic, clay loam soil while MZ2, comprising 15.11% of the area, has a weakly acidic loam soil. MZ3, the smallest zone occupying 2.79% of the area, has a highly acidic loam soil and may require frequent as well as intensive lime applications. These findings highlight the varied spatial dependency and distribution of soil characteristics even in a relatively small area and the usefulness of the interpolated maps as a valuable tool to identify specific management zones.
Wydawca
Rocznik
Tom
Strony
75--86
Opis fizyczny
Bibliogr. 52 poz., rys., tab.
Twórcy
autor
- Division of Soil Science, Agricultural Systems Institute, College of Agriculture and Food Science, University of the Philippines Los Baños, College, Laguna, Philippines
autor
- Division of Soil Science, Agricultural Systems Institute, College of Agriculture and Food Science, University of the Philippines Los Baños, College, Laguna, Philippines
autor
- Division of Soil Science, Agricultural Systems Institute, College of Agriculture and Food Science, University of the Philippines Los Baños, College, Laguna, Philippines
autor
- Division of Soil Science, Agricultural Systems Institute, College of Agriculture and Food Science, University of the Philippines Los Baños, College, Laguna, Philippines
autor
- Division of Soil Science, Agricultural Systems Institute, College of Agriculture and Food Science, University of the Philippines Los Baños, College, Laguna, Philippines
autor
- Division of Soil Science, Agricultural Systems Institute, College of Agriculture and Food Science, University of the Philippines Los Baños, College, Laguna, Philippines
autor
- Division of Soil Science, Agricultural Systems Institute, College of Agriculture and Food Science, University of the Philippines Los Baños, College, Laguna, Philippines
Bibliografia
- 1. AbdelRahman, M.A., Zakarya, Y.M., Metwaly, M.M., Koubouris, G. 2020. Deciphering soil spatial variability through geostatistics and interpolation techniques. Sustainability, 13(1), 194. https://doi.org/10.3390/su13010194
- 2. Amirinejad, A.A., Kamble, K., Aggarwal, P., Chakraborty, D., Pradhan, S., Mittal, R.B. 2011. Assessment and mapping of spatial variation of soil physical health in a farm. Geoderma, 160(3–4), 292–303. https://doi.org/10.1016/j.geoderma.2010.09.021
- 3. Buol, S.W., Southard, R.J., Graham, R.C., McDaniel, P.A. 2011. Soil genesis and classification. https://doi.org/10.1002/9780470960622
- 4. Cambardella, C.A., Moorman, T.B., Novak, J.M., Parkin, T.B., Karlen, D.L., Turco, R.F., Konopka, A.E. 1994. Field‐scale variability of soil properties in central Iowa soils. Soil Science Society of America Journal, 58(5), 1501–1511. https://doi.org/10.2136/sssaj1994.03615995005800050033x
- 5. Carating, R.B., Galanta, R.G. and Bacatio, C.D. 2014. The soils of the Philippines. https://doi.org/10.1007/978-94-017-8682-9
- 6. Damian, J.M., Santi, A.L., Fornari, M., Da Ros, C.O., Eschner, V.L. 2017. Monitoring variability in cash-crop yield caused by previous cultivation of a cover crop under a no-tillage system. Computers and Electronics in Agriculture, 142, 607–621. https://doi.org/10.1016/j.compag.2017.11.006
- 7. Davatgar, N., Neishabouri, M.R., Sepaskhah, A.R. 2012. Delineation of site specific nutrient management zones for a paddy cultivated area based on soil fertility using fuzzy clustering. Geoderma, 173–174, 111–118. https://doi.org/10.1016/j.geoderma.2011.12.005
- 8. Delbari, M., Afrasiab, P., Gharabaghi, B., Amiri, M., Salehian, A. 2019. Spatial variability analysis and mapping of soil physical and chemical attributes in a salt-affected soil. Arabian Journal of Geosciences, 12, 1–18. https://doi.org/10.1007/s12517-018-4207-x
- 9. Desavathu, R.N., Nadipena, A.R., Peddada, J.R. 2018. Assessment of soil fertility status in Paderu Mandal, Visakhapatnam district of Andhra Pradesh through Geospatial techniques. The Egyptian Journal of Remote Sensing and Space Science, 21(1), 73–81. https://doi.org/10.1016/j.ejrs.2017.01.006
- 10. FAOa. 2021. Standard operating procedure for soil electrical conductivity, soil/water, 1:5.
- 11. FAOb. 2021. Standard operating procedure for soil pH determination.
- 12. Fu, W., Tunney, H., Zhang, C. 2010. Spatial variation of soil nutrients in a dairy farm and its implications for site-specific fertilizer application. Soil and Tillage Research, 106(2), 185–193. https://doi.org/10.1016/j.still.2009.12.001
- 13. Fraisse, C.W., Sudduth, K.A., Kitchen, N.R. 2001. Delineation of Site-Specific Management Zones by Unsupervised Classification of Topographic Attributes and Soil Electrical Conductivity. Transactions of the ASABE, 44, 155–166.
- 14. Gili, A., Álvarez, C., Bagnato, R., Noellemeyer, E. 2017. Comparison of three methods for delineating management zones for site-specific crop management. Computers and Electronics in Agriculture, 139, 213–223. https://doi.org/10.1016/j.compag.2017.05.022
- 15. Georgi, C., Spengler, D., Itzerott, S., Kleinschmit, B. 2017. Automatic delineation algorithm for sitespecific management zones based on satellite remote sensing data. Precision Agriculture, 19(4), 684–707. https://doi.org/10.1007/s11119-017-9549-y
- 16. He, Y., Hu, K.L., Huang, Y.F., Li, B.G., Chen, D.L. 2010. Analysis of the anisotropic spatial variability and three-dimensional computer simulation of agricultural soil bulk density in an alluvial plain of north China. Mathematical and Computer Modelling, 51(11–12), 1351–1356. https://doi.org/10.1016/j.mcm.2009.11.011
- 17. Heijting, S., De Bruin, S., Bregt, A.K. 2010. The arable farmer as the assessor of within-field soil variation. Precision Agriculture, 12(4), 488–507. https://doi.org/10.1007/s11119-010-9197-y
- 18. Jin, Z., Prasad, R., Shriver, J., Zhuang, Q. 2016. Crop model- and satellite imagery-based recommendation tool for variable rate N fertilizer application for the US Corn system. Precision Agriculture, 18(5), 779–800. https://doi.org/10.1007/s11119-016-9488-z
- 19. Johnston, K., Ver Hoef, J.M., Krivoruchko, K., Lucas, N. 2001. Using ArcGIS geostatistical analyst.
- 20. Jones, J.B. 2001. Laboratory guide for conducting soil tests and plant analysis. CRC press. https://doi.org/10.1201/9781420025293
- 21. Júnior, V.V., Carvalho, M., Dafonte, J., Freddi, O., Vázquez, E.V., Ingaramo, O. 2006. Spatial variability of soil water content and mechanical resistance of Brazilian ferralsol. Soil & Tillage Research, 85(1–2), 166–177. https://doi.org/10.1016/j.still.2005.01.018
- 22. Khan, M.Z., Islam, M.R., Salam, A.B.A., Ray, T. 2021. Spatial variability and geostatistical analysis of soil properties in the diversified cropping regions of Bangladesh using geographic information system techniques. Applied and Environmental Soil Science, 1–19. https://doi.org/10.1155/2021/6639180
- 23. Koch, B., Khosla, R., Frasier, W.M., Westfall, D.G., Inman, D. 2004. Economic feasibility of variable‐ rate nitrogen application utilizing site‐specific management zones. Agronomy Journal, 96(6), 1572– 1580. https://doi.org/10.2134/agronj2004.1572
- 24. Laekemariam, F., Kibret, K., Mamo, T., Shiferaw, H. 2018. Accounting spatial variability of soil properties and mapping fertilizer types using geostatistics in southern Ethiopia. Communications in Soil Science and Plant Analysis, 49(1), 124–137. https://doi.org/10.1080/00103624.2017.1421656
- 25. Leroux, C. and Tisseyre, B. 2018. How to measure and report within-field variability: a review of common indicators and their sensitivity. Precision Agriculture, 20(3), 562–590. https://doi.org/10.1007/s11119-018-9598-x
- 26. Li, L., Zhao, Z., Peng, Z., Qin, S. 2013. Soil spatial variability and interpolation method based on GIS in large scale. Guizhou Agricultural Sciences, 8, 195– 199. https://doi.org/10.1016/j.jssas.2016.02.001
- 27. Liu, C.L., Wu, Y.Z., Liu, Q.J. 2015. Effects of land use on spatial patterns of soil properties in a rocky mountain area of Northern China. Arabian Journal of Geosciences, 8, 1181–1194. https://doi.org/10.1007/s12517-013-1233-6
- 28. López-Granados, F., Jurado-Expósito, M., Atenciano, S., García-Ferrer, A., Sánchez de la Orden, M., García-Torres, L. 2002. Spatial variability of agricultural soil parameters in southern Spain. Plant and Soil, 246, 97-105. https://doi.org/10.1023/A:1021568415380
- 29. Losser, T., Li, L., Piltner, R. 2014. A spatiotemporal interpolation method using radial basis functions for geospatiotemporal big data. In: Fifth International Conference on Computing for Geospatial Research and Application. IEEE. https://doi.org/10.1109/COM.Geo.2014.15
- 30. McBratney, A.B., and Webster, R. 1983. How many observations are needed for regional estimation of soil properties? Soil Science, 135(3), 177–183.
- 31. McGrath, D., and Zhang, C. 2003. Spatial distribution of soil organic carbon concentrations in grassland of Ireland.Applied Geochemistry, 18(10), 1629–1639. https://doi.org/10.1016/S0883-2927(03)00045-3
- 32. Moral, F., Terrón, J., Da Silva, J.M. 2010. Delineation of management zones using mobile measurements of soil apparent electrical conductivity and multivariate geostatistical techniques. Soil & Tillage Research, 106(2), 335–343. https://doi.org/10.1016/j.still.2009.12.002
- 33. Nolan, S.C., Goddard, T.W., Lohstraeter, G., Coen, G.M., Robert, P.C., Rust, R.H., Larson, W.E. 2000. Assessing managements units on rolling topography. Proceedings of the 5th International Conference on Precision Agriculture, Bloomington, Minnesota, USA, 16–19 July, 2000: 1–12
- 34. Oliver, M.A., and Webster, R. 2014. A tutorial guide to geostatistics: Computing and modelling variograms and kriging. Catena, 113, 56–69. https://doi.org/10.1016/j.catena.2013.09.006
- 35. Pardo-Igúzquiza, E., and Dowd, P.A. 2013. Comparison of inference methods for estimating semivariogram model parameters and their uncertainty: The case of small data sets. Computers and Geosciences, 50, 154–164. https://doi.org/10.1016/j.cageo.2012.06.002
- 36. Pereira, P., Brevik, E.C., Cerdà, A., Úbeda, X., Novara, A., Francos, M., Comino, J.R., Bogunovic, I. and Khaledian, Y. 2017. Mapping ash CaCO3 , pH, and extractable elements using principal component analysis. In: Soil Mapping and Process Modeling for Sustainable Land Use Management. https://doi.org/10.1016/B978-0-12-805200-6.00010-4
- 37. Reza, S.K., Baruah, U., Sarkar, D., Singh, S.K. 2016. Spatial variability of soil properties using geostatistical method: A case study of lower Brahmaputra plains, India.Arabian Journal of Geosciences, 9, 1–8. https://doi.org/10.1007/s12517-016-2474-y
- 38. Reza, S.K., Sarkar, D., Baruah, U., Das, T.H. 2010. Evaluation and comparison of ordinary kriging and inverse distance weighting methods for prediction of spatial variability of some chemical parameters of Dhalai district, Tripura. Agropedology, 20(1), 38–48.
- 39. Richards L.A. 1954. Diagnosis and Improvement of Saline and Alkaline Soils. Handbook No. 60. US Department of Agriculture, Washington.
- 40. Sadras, V. and Bongiovanni, R. 2004. Use of Lorenz curves and Gini coefficients to assess yield inequality within paddocks. Field Crops Research, 90(2–3), 303– 310. https://doi.org/10.1016/j.fcr.2004.04.003
- 41. Santi, A., Amado, T., Eitelwein, M., Cherubin M., Silva, R., Ros, C. 2013. Definição de zonas de produtividade em áreas manejadas com agricultura de precisão. Agrária, 8(3), 510–515. https://doi.org/10.5039/agraria.v8i3a2489
- 42. Shi, W., Liu, J., Du, Z., Song, Y., Chen, C., Yue, T. 2009. Surface modelling of soil pH. Geoderma, 150(1–2), 113–119. https://doi.org/10.1016/j.geoderma.2009.01.020
- 43. Shukla, A.K., Behera, S.K., Lenka, N.K., Tiwari, P.K., Prakash, C., Malik, R.S., Sinha, N.K., Singh, V.K., Patra, A.K., Chaudhary, S.K. 2016. Spatial variability of soil micronutrients in the intensively cultivated Trans-Gangetic Plains of India. Soil and Tillage Research, 163, 282–289. https://doi.org/10.1016/j.still.2016.07.004
- 44. Tripathi, R., Nayak, A., Shahid, M., Lal, B., Gautam, P., Raja, R., Mohanty, S., Kumar, A., Panda, B., Sahoo, R. 2015. Delineation of soil management zones for a rice cultivated area in eastern India using fuzzy clustering. Catena, 133, 128–136. https://doi.org/10.1016/j.catena.2015.05.009
- 45. Vasu, D., Singh, S.K., Sahu, N., Tiwary, P., Chandran, P., Duraisami, V.P., Ramamurthy, V., Lalitha, M., Kalaiselvi, B. 2017. Assessment of spatial variability of soil properties using geospatial techniques for farm level nutrient management. Soil and Tillage Research, 169, 25–34. https://doi.org/10.1016/j.still.2017.01.006
- 46. Vieira, S.R., Millete, J., Topp, G.C., Reynolds, W.D. 2002. Handbook for geostatistical analysis of variability in soil and climate data. Topics in Soil Science, 2, 1–45.
- 47. Vrindts, E., Mouazen, A., Reyniers, M., Maertens, K., Maleki, Ramon, H., De Baerdemaeker, J. 2005. Management zones based on correlation between soil compaction, yield and crop data. Biosystems Engineering, 92(4), 419–428. https://doi.org/10.1016/j.biosystemseng.2005.08.010
- 48. Webster, R., and Oliver, M.A. 2007. Geostatistics for environmental scientists. https://doi.org/10.1002/9780470517277
- 49. Wilding, L.P. 1985. Spatial variability: its documentation, accommodation and implication to soil surveys.
- 50. Xin-Zhong, W., Guo-Shun, L., Hong-Chao, H., Zhen-Hai, W., Qing-Hua, L., Xu-Feng, L., Wei- -Hong, H., Yan-Tao, L. 2009. Determination of management zones for a tobacco field based on soil fertility. Computers and Electronics in Agriculture, 65(2), 168–175. https://doi.org/10.1016/j.compag.2008.08.008
- 51. Yang, Z., Chen, P., Liu, J., Yu, K., Liao, X., You, H., Miao, L. 2012. Spatial interpolation of forest soil nutrients based on Kriging method. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 41(3), 296–300.
- 52. Zhang, C. 2006. Using multivariate analyses and GIS to identify pollutants and their spatial patterns in urban soils in Galway, Ireland. Environmental Pollution, 142(3), 501–511. https://doi.org/10.1016/j.envpol.2005.10.028
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2df43084-ea78-4a42-9ab4-40718503a67d