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INTRODUCTION

The management zone (MZ) approach is a 
field-specific strategy that divides the field into 
smaller zones based on shared limitations to crop 
yield [Vrindts et al., 2005], depending on the com-
parable environmental conditions. Significant and 
relevant parameters are those that directly influ-
ence crop yield, including - but not limited to - 
soil properties like soil pH, moisture condition, 
OM, and texture. Researchers and practitioners 
combine various parameters to delineate manage-
ment zones. Delineating MZs involves utilizing 
various data points derived from crop yield maps 
[Santi et al., 2013; Damian et al., 2017], farmer’s 

knowledge [Koch et al., 2004; Heijting et al., 
2011], geomorphology [Nolan et al. 2000, Fraisse 
et al., 2001], remotely sensed data [Georgi et al., 
2018; Jin et al., 2017], and soil properties [Gili et 
al., 2017; Tripathi et al., 2015].

Understanding the field-specific soil proper-
ties within an area is an effective tool for sustain-
able resource management [AbdelRahman et al., 
2021]. Significant variation in the complexity of 
the soil properties over both larger regional ar-
eas and smaller field scales is observed, exhibit-
ing diverse spatial and temporal patterns, even 
within soil series or mapping units [Amirinejad 
et al., 2011; Laekemariam et al., 2018; Shukla 
et al., 2016]. Due to the dynamic effects of soil 
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processes influenced by the elements of soil for-
mation and by extrinsic variables, such as crop-
ping patterns, application of agricultural inputs, 
and management practices, among others, soil 
properties vary throughout regions [Buol et al., 
2011; Liu et al., 2015; Shi et al., 2009].

Accurate spatial variability characterization 
requires methods beyond the traditional soil col-
lection and laboratory analysis, as these methods 
remain uneconomical when dealing with large 
volumes of soil. Spatial interpolation is a process 
of using known points with available observed 
data to estimate values at other unknown points 
[Losser et al., 2014]. It includes deterministic 
and geostatistical interpolation methods. While 
various geostatistical methods exist for assessing 
soil heterogeneity, kriging is the commonly pre-
ferred method utilized by researchers [Desavathu 
et al., 2017; Reza et al., 2016; Vasu et al., 2017]. 
Various kriging approaches include disjunctive, 
indicator, ordinary, simple, and universal kriging 
methods. Ordinary kriging, a commonly trusted 
and extensively used method, operates on the as-
sumption that the mean value is constant but un-
known. Researchers have extensively employed 
this method to spatially map various soil charac-
teristics [Li et al., 2013; Yang et al., 2012].

The within-field spatial variability of various 
soil characteristics has gained significant focus in 
recent decades [Leroux and Tisseyre, 2019]. The 
studies commonly pertain to the homogeneity and 
heterogeneity of the areas within a field as well 
as how these similarities and differences within 
the field affect crop productivity [Sadras and 

Bongiovanni, 2004]. In this regard, the location-
specific characteristics of the area were mapped 
depending on the variables of interest. Most stud-
ies further assessed the specific properties within-
field for site-specific management [Junior et al., 
2006; Reza et al., 2010; Vasu et al., 2017] or map-
ping purposes [Davatgar et al., 2012; Moral et al., 
2010; Xin-Zhong et al., 2009].

The spatial representation of within-field 
variability can be simplified through the delin-
eation of zones within the field. The idea is to 
create a manageable number of uniform zones 
within a field to consider the key variations in 
soil properties that might exist across the area. 
Thus, this study assessed the within-field spatial 
distribution of soil pH, EC, and particle size dis-
tribution in a seven-hectare field using ordinary 
kriging and utilization of interpolated maps to 
delineate management zones.

MATERIAL AND METHODS

Study area

The study site is a recently established experi-
mental research station at the University of the 
Philippines Los Baños, between 14.1472° N, and 
121.2613° E near Bay, Laguna (Fig. 1). The area 
sits at an elevation of roughly 28 meters above sea 
level (m asl). The study area is a 7-hectare parcel 
of land recently developed to advance the study 
of short-term and long-term organic agriculture 
research and capability-building programs. In the 

Figure 1. Location and sampling point distribution within the study area (n = 50)
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past, the land was mainly used for grazing live-
stock. However, in 2018, it was repurposed into a 
research center focused on organic farming. The 
conversion signifies a dedication to studying and 
promoting organic farming methods, including 
experiments, data collection, as well as sharing 
knowledge on techniques such as crop rotation, 
composting, and pest control. This change from 
grazing land to an organic research center marks 
a substantial shift towards sustainable, environ-
mentally friendly farming practices and scientific 
advancement in agriculture.

Soil collection and analyses

Fifty soil samples were collected from the sur-
face layer at a depth of 0–20 cm using a random 
sampling technique. For each sampling point, five 
subsamples were combined into one large com-
posite sample. The collected soil samples were 
air-dried, crushed into smaller particles, sifted 
through a 2-mm sieve, and stored in labeled sam-
pling bags. Standard laboratory tests were used to 
analyze soil pH, in 1:5 (m:v) soil suspension in 
0.01 M CaCl2 solution [FAOb, 2021], EC, in 1:5 
ratio [FAOa, 2021], and particle size distribution 
(hydrometer method). The textural classes were 
identified using the multi-point texture triangle 
Excel tool developed by the USDA.

Descriptive statistics and data transformation

To summarize the data, measures of central 
tendency (mean), spread (minimum, maximum, 
and standard deviation), and variability (coeffi-
cient of variation, skewness, and kurtosis) were 
calculated. The Kolmogorov-Smirnov (KS) test 
was employed to evaluate data normality. For the 
data that did not follow a normal distribution, the 
Box-Cox transformation was applied [Delbari et 
al., 2019; Fu et al., 2010; Pereira et al., 2017]. The 
relationship between the parameters was assessed 
using the Pearson correlation matrix. Statistical 
tests were performed using the Minitab® 21.3.1 
statistical software.

Geostatistical analysis

The study used the geostatistical analyst GUI 
(ArcGIS Pro version 2.7). The kriging process fol-
lows the Equation below [Webster and Oliver, 2007].
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where:	Z*(S0) is the interpolated value at an un-
sampled site S0, Z(Si) is the known value 
for the test parameter at the sampling lo-
cation Si, N is the site density in the search 
location for the interpolation, and γi is the 
weight of the determined value at Si.

Employing various models, semivariograms 
were utilized to map the spatial distribution of soil 
properties. To determine the interpolation function, 
semivariogram analysis was performed as follows:
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where: γ(h) is the spatial dependence at lag dis-
tance h, N(h) is the number of sample 
point pairs as separated by h, and Z(Si) is 
the variable Z value at the location Si.

Choosing the appropriate semivariogram 
model and its parameters is crucial for achieving 
precise interpolation [Oliver and Webster, 2014; 
Pardo-Igúzquiza and Dowd, 2013]. The study as-
sessed the performance of three commonly used 
semivariogram functions – Gaussian (Equation 
3), exponential (Equation 4), and spherical (Equa-
tion 5) – in the identification of the best-fit model 
that represents spatial variability within the data 
set. The Gaussian model demonstrates that spa-
tial autocorrelation initially rises with increasing 
distance, then progressively declines, ultimately 
reaching zero after a particular threshold distance 
is surpassed. The exponential model demonstrates 
that spatial autocorrelation diminishes exponen-
tially as distance increases, and autocorrelation 
will only cease entirely at an infinite distance. The 
spherical model shows that spatial autocorrelation 
between data points progressively weakens with 
increasing distance, where there is no spatial de-
pendence at zero at a specific threshold distance.
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where:	Co is the nugget, C1 is the partial sill, C0 + C1 
is the sill, and a is the range to reach sill.  

Sill represents the semivariance value at 
which the model reaches a plateau or maximum 
variability that can be explained by spatial de-
pendence, whereas the nugget represents any 
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variability that exists due to random factor or mi-
croscale variation (y-intercept of the semivario-
gram model) that cannot be attributed to spatial 
dependence. When the separation distance (h) is 
zero, the semivariogram should theoretically be 
zero. However, if there is a departure from this 
(known as the nugget effect), it might be from mi-
nor variations at a small scale or measurement er-
rors. The range indicates the distance wherein the 
semivariance achieves its peak value.

Furthermore, the analysis involved calculating 
the nugget-to-sill ratio or degree of spatial depen-
dence (DSD). A ratio below 25% suggests a strong 
spatial dependence, meaning the data points close 
together tend to have similar values. This depen-
dence likely arises from inherent or internal factors 
influencing the variable across the study area. Con-
versely, a ratio above 75% indicates a weak spatial 
dependence, where data points have little to no cor-
relation with distance. This suggests the existence of 
external factors affecting the variation. A DSD range 
of 25–75% indicates a moderate spatial dependence, 
reflecting the influence of both internal and external 
factors on the observed variability [Cambardella et 
al., 1994]. A DSD value approaching 0% signifies 
a significant geographic autocorrelation in the vari-
able, but a value nearing 100% implies that the field-
specific variation is mostly influenced by the nugget 
effect or randomness [He et al., 2010].

Cross-validation

Cross-validation is a widely used technique to 
check how well interpolation methods perform. 
This evaluation considered several parameters, 
including average standard error (ASE), mean er-
ror (ME), mean square error (MSE), root mean 
square error (RMSE), and standardized root mean 
square error (RMSSE).

Identification of management zones

The interpolated maps were categorized into 
consistent classes to define the management 

zones. Soil texture was reclassified based on 
USDA soil textural classes while the soil pHCaCl 
and EC were reclassified into 5 categories ac-
cording to Jones [2001] and Richards [1954], re-
spectively. Using the ArcGIS Pro spatial analyst 
tool, a weighted overlay analysis was employed 
to generate the MZ maps.

RESULTS AND DISCUSSION

Descriptive statistics

The summary statistics of soil pH, EC, and 
particle size fractions are presented in Table 1. 
The site is generally acidic with an average pH of 
4.77, ranging from 4.20 to 5.80. EC has a mean 
of 65.36 μS·cm-1 and it ranges between 36.58 to 
156.00 μS·cm-1. The mean values of the particle 
size fractions are approximately 28.45% sand, 
40.50% silt, and 31.06% clay. On the basis of the 
USDA texture classes, 40 samples were classified 
as clay loam, 9 were loam, and 1 was silt loam 
(Figure 2). It conforms to the fact that the area is 
mapped under Lipa soil series, a medium textured 
soil with a texture class from loam to clay loam 
[Carating et al., 2014]. Low standard deviation 
values of the soil properties were observed, ex-
cept for EC. It indicates that pH and particle size 
fractions values are clustered around the mean 
value while the EC values are more spread out.

As a measure of variability, the coefficient of 
variation (CV) was generated describing values 
less than 15% as low variation, values between 
15% and 35% as medium variation, and values 
exceeding 35% were considered high varia-
tion, as proposed by Wilding [1985]. A low CV 
value of 7.80% was observed in soil pH, which 
indicates a uniform condition in the area, which 
may be attributed to the minimal changes in the 
physiographic features, such as elevation, slope, 
and soil type. In contrast, EC has high variability 
(38.89%) indicating heterogeneity. This agrees 
with the findings by Khan et al. [2021]. Further-
more, low CV values were also observed for sand, 

Table 1. Summary statistics of the soil properties (n = 50)
Parameter Minimum Maximum Mean SD CV% Skewness Kurtosis K-S p

pHCaCl2 4.20 5.80 4.77 0.37 7.80 0.50 0.02 0.115

EC, μS·cm-1 36.58 156.00 65.36 25.42 38.89 1.44 2.33 <0.010

Sand, % 20.18 36.42 28.45 4.03 14.17 -0.01 -0.85 >0.150

Silt, % 33.11 50.15 40.50 4.65 11.49 0.21 -0.88 >0.150

Clay, % 21.47 39.18 31.06 3.88 12.49 -0.36 -0.05 >.100
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silt, and clay with 14.17%, 11.49%, and 12.49%, 
respectively, indicating a similar soil series de-
rived from the same parent material and has un-
dergone natural development as well as potential 
influence by human activities. Furthermore, the 
relationship between the soil pH and EC and the 
textural classes presented variability, as shown in 
Figure 3. Clay loam soils tend to have a wider pH 
than the loamy soils, while both soil types have 
a wider EC range. The variation in pH and EC is 
mostly due to the diverse soil management strate-
gies implemented.

The skewness and kurtosis values were rela-
tively small (<1) except for EC. Soil pH and EC 
were positively skewed and both properties have 
positive kurtosis values, while sand and clay have 
negative skewness and kurtosis values. Silt has 
positive skewness and a negative kurtosis. If the 

data are not significantly skewed, the ordinary 
kriging predictor performs better. A skewness and 
kurtosis value close to zero suggests a normal dis-
tribution [Vieira et al., 2002]. The soil EC is not 
normally distributed at 0.05 significant level ac-
cording to the KS test. Box-Cox transformation 
was appropriate to normalize the soil EC. It is 
normal for some soil data not to follow a normal 
distribution [McGrath and Zhang, 2003]. How-
ever, kriging approaches are useful when normal 
distribution is observed [Johnston et al., 2001; 
Zhang, 2006]. Data normalization improves data 
stationarity and reduces outliers.

Figure 4 illustrates the Pearson correlation 
coefficients of the soil parameters. EC, clay, and 
silt significantly correlate with soil pH while 
clay and silt are significantly correlated with 
EC. Particle size fractions (sand, silt, and clay) 

Figure 2. Soil textural class distribution on the USDA textural triangle

Figure 3. Individual value plot of (a) pH and (b) EC grouped by textural 
classes (CL = clay loam, L = loam, SiL = silt loam)
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are significantly correlated. Regarding the level of 
correlation among properties, pH has a moderate 
correlation (positive) with EC (r = 0.307) and silt 
(r = 0.448). Clay has a moderate correlation (neg-
ative) with pH (r = -0.493) and EC (r = -0.453). 
Furthermore, EC and silt have a weak correlation 
(positive) (r = 0.299). In terms of the particle frac-
tions, silt has a strong correlation (negative) with 
clay (r = -0.566) and sand (r = -0.610) while clay 
has a weak correlation (negative) with sand (r = 
-0.308). The relationship between the three frac-
tions of soil particles is inversely proportional, as 
their combined total equals 100%.

Geostatistics and spatial variability mapping

The optimal model was selected for the or-
dinary kriging of the soil properties. Table 2 and 

Figure 5 show the best-fit semivariogram models. 
Clay content has no nugget effect following the 
spherical model. Nugget of the other soil param-
eters can be attributed to both inherent measure-
ment errors or variations at smaller distances than 
the sample interval [Oliver and Webster, 2014]. 
The observed sill values, the value of the semi-
variogram at which the model becomes flat, were 
relatively small.

The maximum distance at which a variable 
no longer exhibits spatial dependence is denoted 
by the range. The range values for soil pH, EC, 
and particle size fractions were between 56.20 to 
193.86 m. A low range value indicates that soil 
properties are primarily influenced by their im-
mediate neighboring values, and less influenced 
by values at farther distances [Mcbratney and 
Webster, 1983, Lopez-Granados et al., 2002]. 

Figure 4. Pearson correlation matrix plot of pH, EC, sand, silt, and clay

Table 2. Best-fitted semivariogram model parameters of the soil variables

Parameter Model Nugget (C0) Partial Sill (C1) Sill, (C0 + C1)
Nugget/sill 
ratioa (%) DSDb Range (m)

pH Spherical 0.0645 0.0935 0.1580 40.82 Moderate 193.86

EC* Exponential 5.46 × 10-6 2.16 × 10-5 2.71 × 10-5 20.15 Strong 56.20

Sand Spherical 9.4686 0.7250 10.1936 92.89 Weak 70.58

Silt Spherical 8.7941 6.9286 15.7227 55.93 Moderate 118.42

Clay Spherical 0.0000 12.9736 12.9736 0.00 Strong 57.95

Note: aNugget/sill ratio(%) = C0/(C0 + C1) × 100; bDegree of spatial dependence (DSD); strong <25%, moderate 
25–75% and weak > 75%, *Box-Cox transformed
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Figure 5. Fitted semivariograms of (a) pH, (b) EC, (c) sand, (d) silt, and (e) clay
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Spatial autocorrelation extends beyond the dis-
tance covered by the sampling interval (<50 m). 
Therefore, the method of sampling strategy is 
suitable for this investigation, and the interpolat-
ed map is anticipated to be effective in reflecting 
the underlying spatial variation.

The nugget/sill ratio (%) values of pH, EC, 
sand, silt, and clay were 40.82, 20.15, 92.89, 55.93, 
and 0.00%, respectively. The nugget/sill ratio was 
utilized to categorize the DSD exhibited by soil pa-
rameters. The strong spatial dependency of EC and 
clay suggests that the random elements less likely 
affected its spatial distribution. Soil pH and silt 
were observed to have a moderate spatial depen-
dence while sand has a weak spatial dependence.

Cross-validation

The models’ performances were evaluated by 
analyzing their prediction errors. Prediction er-
rors of the best-suited methods are shown in Table 
3. Cross-validation estimates the model using all 
available data. The algorithm individually removes 
each data from sampling locations and guesses the 
corresponding data value using the remaining data. 
This was done to identify the semivariogram model 
that would generate the most accurate predictions. 
By analyzing the estimated prediction errors, it was 
evaluated how well the model captured the spatial 
variation of each variable, ultimately determining its 
suitability for mapping these properties. To ensure 
model reliability, the ME and MSE values should 
approach zero, while both ASE and RMSE values 
should be small and close to each other, and the 
RMSSE value should approximate one [Johnston et 
al., 2001]. It was determined that the best model for 
pH, sand, silt, and clay was spherical while the best 
model for EC was exponential.

After choosing the most suitable theoretical 
models and their corresponding semivariogram pa-
rameters, spatial variability maps were generated 
(Fig. 6). According to the soil pH map, the NE part 
exhibited higher pH levels in comparison to other 

areas depicted on the map. This area is being regu-
larly used for organic trials, and the addition of or-
ganic fertilizers and lime applications have contrib-
uted to the improvement of soil pH. The EC within 
the area is quite varied but these values are very low 
(< 4000 µS·cm-1), indicating that the area has very 
low soluble salt content. In terms of soil texture frac-
tions, sand is high from NW to W and low in the S. 
Silt content is increasing from W to E while the clay 
content is higher in the center of the area and some 
portions of the N and S and there is a decrease in W 
and E areas. Even within the same soil series, differ-
ences in management can lead to variations in soil 
properties. These maps are valuable for precision 
farming and tailored management strategies.

Delineation of management zones

Figure 7 shows the location and size of the 
three distinct management zones (MZ1, MZ2, 
and MZ3) identified. A considerable portion 
(82.10%) was classified as MZ1 with weakly 
acidic (pH 4.5–6.5) clay loam soil. To ensure 
that soil pH remains suitable for optimal growth 
of crops, periodic lime application is recom-
mended. This will help neutralize acidity and 
improve nutrient availability. A small fraction 
(15.11%) was classified as MZ2 with weakly 
acidic loam soil. Similar to MZ1, maintaining 
pH within the optimal range through lime appli-
cation is essential for MZ2. Certain vegetables, 
such as carrots, lettuce, and potatoes thrive in 
loamy soils due to their good drainage and nu-
trient availability. The smallest zone was MZ3 
(2.79%) with highly acidic (pH > 4.5) loam soil. 
Given the highly acidic nature of this zone, more 
frequent and intensive lime application is nec-
essary to raise the pH above 5.0. Acid-tolerant 
crops may be suitable. However, if pH is ade-
quately corrected, a wider range of crops can be 
considered. Furthermore, enhanced fertilization 
may be required, as less nutrients become less 
available in highly acidic soils.

Table 3. Cross-validation parameters of the best-fit models

Parameter Model
Prediction errors

ME RMSE MSE RMSSE ASE

pH Spherical -0.0022 0.3394 -0.0114 1.0734 0.3147

EC Exponential -1.7257 25.5141 -0.1509 1.1556 26.9481

Sand Spherical -0.0629 3.3065 -0.0194 0.97516 3.3754

Silt Spherical -0.0336 3.9611 -0.0106 1.0782 3.6369

Clay Spherical -0.0486 3.4081 -0.0084 1.0013 3.3551
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Figure 6. Spatial distribution of (a) pH, b) EC, (c) sand, (d) silt, and (e) clay in the study area



84

Ecological Engineering & Environmental Technology 2024, 25(10), 75–86

Figure 7. Delineation of management 
zones in the study area

approach to use interpolated maps for delin-
eating management zones. Further studies may 
examine the potential of incorporating remotely 
sensed data to possibly improve the identifica-
tion of management zones.
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