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Abstract 

In this paper we study the influence of damping on the stability of columns under variable loads ofcirculatory 

type. As opposed to the case of static loading by potential forces, energy dissipation by damping does – in general – 

not ensure a stabilizing effect. For purely elastic columns, the stability limit can be improved by shape optimization. 

Here we show that by optimizing the distribution of damping effects along a column it is also possible to increase the 

critical load of a given column. 

INTRODUCTION 

We consider the Bernoulli-Euler beam equation with an addi-
tional damping term as a model for a column under a compressing 
longitudinal force. At the bottom, clamped boundary conditions are 
assumed. For the tip, Beck’s or Reut’s conditions are imposed, ex-
emplary for a circulatory load. As a consequence, we obtain a non-
self-adjoint boundary value problem for the lateral displacement. 

In Figure 1, models of Beck, Reut and Euler columns are pre-
sented. Only the last case turns out to be conservative, i.e., the total 
energy is preserved. In the two other cases, during an oscillation 
around the trivial equilibrium position energy may be gained from the 
external force – which means that a flatter-type instability may occur, 
see e.g. [2-4] and [7]. 

 
Fig. 1.Academic column models: Beck, Reut and Euler 

 
In the Euler case, the instability is of divergent type, at the critical 

load there is a bifurcation of the equilibrium solution path. 
 

 
Fig. 2.Real-world construction under follower force  

 
For real-world applications, cf. Figure 2, the static critical dead 

load is well known, it can be calculated by a singularity analysis of the 

stiffness matrix describing the tower. It is much more complex to con-
sider the dynamical behaviour, most important are the eigen-frequen-
cies and eigenforms of the construction under the real loading condi-
tions. 

For this paper, we perform our analysis on academic examples, 
preferably on the Beck’s column, bearing in mind, however, applica-
tions as shown in Figure 2. For other applications see [5,6] and [9]. 

 

 
Fig. 3.Change of critical eigenform with increasing load at tip 
 

When the load parameter is increased, on the one hand a 
change in the eigenfrequency is observed, which finally ceases to be 
real-valued, so that instability occurs. On the other hand the form of 
the free oscillations changes. This is shown in Figure 3. At a certain 
load, the number of nodes of a chosen eigenformmay jump e.g. from 
one to two (green to blue), later instability happens – the amplitude 
begins to increase with time (red). 

Our particular interest is in the first eigenforms of the construc-
tion under a compressive load. Usually one of them – but not neces-
sarily that corresponding to the lowest frequency – leads to the loss 
of stability. This is the case, when for the first time,with growing load,a 
negative imaginary part of an eigenfrequency appears. 

Figure 3, compare also Figure 6, illustrates the fact that the mode 
– in the sense of number of nodes – of the first eigenform may be 
higher than one. Knowledge of the eigenform that turns critical is very 
helpful for determining a suitable damping distribution. 

It should be mentioned that similar considerations concern the 
stability of plates under follower forces applied along the edges, [1]. 
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1. MODEL EQUATIONS 

The partial differential equation governing lateral displacements 
in an Euler beam is the following: 

(𝑆𝑢𝑥𝑥 + 𝑃𝑢)𝑥𝑥 + 𝜌𝑢𝑡𝑡 − 𝑏 = 0 .  (1) 
The boundary conditions are: 

𝑢(0, 𝑡) = 𝑢𝑥(0, 𝑡) = 0,   (2) 

𝑢𝑥𝑥(1, 𝑡) = (𝑆𝑢𝑥𝑥(1, 𝑥))𝑥 = 0 .  (3) 

Here 𝑢 = 𝑢(𝑥, 𝑡) denotes the lateral displacement of the mid-
dle line of the considered column, position 𝑥 and time 𝑡are the inde-
pendent variables. Partial derivatives we indicate by a subscript. 
Equation (1) expresses the balance of momentum in the lateral direc-
tion, (2) represents clamped conditions at the bottom, (3) demands 
the moment at the tip of the column to vanish and the lateral force to 
be proportional to the inclination, so that the force is always tangential 
to the center line, the modulus of the compression force is kept con-

stant 𝑃. By 𝑆 the bending stiffness is abbreviated. Notice that the 
linear mass density 𝜌 as well as the stiffness may be dependent on 

the location – but not on time. On the other hand, 𝑃 is a concentrated 

force, hence it does not depend on space position 𝑥. While it might 
be a function of time 𝑡, for this paper we assume it to be constant. Of 

course, 𝑃 is just the modulus – the direction of the force is variable, 
thus the system (1-3) is a special case of a problem with a follower 
force. Analogous problems may be considered for other choices of 
(3), e.g. the Reut case is very similar. The Euler case, on the other 
side, is distinguished by a constant force, acting at always the same 
particle, so it is a so-called dead load. 

For better comparison, the variables in (1-3) are assumed to be 

dimensionless, e.g. ∈ [0,1], and the load is measured in multiples of 

𝑆−1𝐿−2, where 𝐿 denotes the true physical length of the column. 

2. SOLUTION METHODS 

In the homogeneous case, i.e. for vanishing body forces 𝑏, there 
are homogenous solutions to (1-3) in the form: 

𝑢(𝑥, 𝑡) = 𝑢(𝑥)𝑒𝑖𝜔𝑡  ,    (4)  
respectively 

𝑢(𝑥, 𝑡) = 𝑢(𝑥) sin(𝜔𝑡) .  (5) 
All scalar multiples and linear combinations of such oscillating solu-
tions fulfil also the equation of motion (1) and both boundary condi-
tions (2) and (3).  
 

 
Fig. 4.Real branches of characteristic root curves for elastic Beck’s 
column, together with Reut and Euler cases for comparison 

 
For a prismatic column of a rectangular profile with unit mass den-

sity and stiffness, below the critical value of 𝑃𝑐𝑟 ≅ 20.05 each fre-

quency 𝜔 compatible with (1-4) is a real number. Above the critical 
load 𝑃𝑐𝑟 , there appear solutions to the homogeneous version of (1), 

i.e. for 𝑏 ≡ 0, with conjugate complex, not real, parameters 𝜔 and 

�̅�.  

Of course, one of the two corresponding solutions exhibits un-
bounded growth, so that the zero solution becomes unstable. In fact, 

a value 𝜔 with positive imaginary part results in an amplitude of the 
form exp(−𝐼𝑚(𝜔)𝑡), which is decaying, but then the conjugate 
complex has a negative imaginary part, which causes exponential 

growth with time. This fact motivates the term critical load 𝑃𝑐𝑟  – it 
marks the onset of instability of solutions to the system (1-3).  

 

 
Fig. 5.Characteristic root curves for elastic Beck’s column, non-real 
parts projected on real plane, in red 
 

Classically, the root curves are obtained by a study of the deter-
minant of the transfer matrix. By such an approach plots like that in 
Figure 3 are obtained. For our present purposes, however, it is es-
sential to find also the non-real branches of the root curves, and the 
number, order and positions of nodes of the forms of oscillations. Ei-
genforms are shown in Figure 3, nodes are counted in Figure 6. 

 

 
Fig. 6.Node numbers along characteristic root curves for elastic 
Beck’s column, based oncount of zeros of eigenforms 

3. OPTIMIZATION OF THE CRITICAL LOAD 

The phenomenon of flatter type instability was widely discussed 
in the literature, e.g. in [2]. Attempts were made to increase the load 

carrying capacity 𝑃𝑐𝑟 , for instance by redistributing material along its 
length, [10-14]. Here it is sound to assume that the stiffness 𝑆 is re-

lated to the mass density 𝜌 by a law of the type  

𝑆 = 𝑆0𝜌3    (6) 
in the case of a column with constant depth. When it is assumed that 
all cross sections are similar, the exponent changes to 4.By similar is 
meant that they have identical width to depth ratio. 

Now, for a given amount of material  

𝑚 = ∫ 𝜌(𝑥)𝑑𝑥
1

0
    (7) 

it is possible to obtain higher values of 𝑃𝑐𝑟  by making the upper part 
of the construction more slender, while the lower part is made wider. 
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In fact, the end segment is now less stiff by virtue of (6), but it has 
also less inertia, so that the overall behaviour is more stable. 

Figure 7 shows the critical load that can be supported by a mod-
ified Beck’s column. The modification uses exactly the same amount 
of material, no lateral supports are introduced. However, a consider-
ably higher critical load is achieved. 

 

 
Fig. 7.Optimamizing a two-segment version of an elastic Beck’s col-
umn 

 
It turns out that the limit load can be pushed further up, when 

more than two segments of constant width are allowed, or if a contin-
uously variable profile, and correspondingly stiffness and density dis-
tributions, are taken into account as a design variables. By means of 
shape optimizations the value of 𝑃𝑐𝑟  can reach up to seven times its 
basic value. Even critical loads of almost 200 are reported, such pro-
files turn out, unfortunately, to be very sensitive to small perturba-
tions, so that they have no practical use, [14]. 

4. SUPPORTS 

Further options for gaining higher load carrying capacities are the 
introduction of lateral supports, either elastic, viscous or visco-elastic 
elements may serve this purpose, [7]. Springs and/or dampers, at-
tached to a lateral frame, or a Winkler-type bedding may be studied 
in this context. In the former case, concentrated forces, multiples of a 

Dirac distribution, appear as an additional term 𝑏 in (1), e.g.: 

𝑏(𝑥, 𝑡) = (−𝑘𝑢(𝑥, 𝑡) − 𝑑𝑢𝑡(𝑥, 𝑡))𝛿(𝑥 − 𝑥𝑠) , (8) 

where𝑥𝑠 is the position of the support, 𝑘 ≥ 0 is the elasticity modu-
lus, 𝑑 ≥ 0 is the damper constant. 
 

 
Fig. 8.Beck’s column with single elastic lateral support 

 
Figure 8 shows the special case that the support is positioned 

exactly in the midpoint of the column. This is the perfect placement in 
the limit case of an infinite modulus of the spring. It turns out that for 
smaller, more realistic, spring constants, a higher position gives a 
larger increment of the critical load. In [4] it was shown that in certain 
regions of the parameter space unexpected drops of the objective 

function may occur. These are typically correlated to changes of 
eigenmodesprovoked by the support. The change in the root curves 

is shown in Figure 9. Notice the increase of 𝑃𝑐𝑡by almost 200% and 
the branch along the imaginary axis, showing that divergent instability 
may be observed at supercritical load. 

In the distributed bedding case, instead of (8) we have:  
𝑏(𝑥, 𝑡) = −𝑘(𝑥)𝑢(𝑥, 𝑡) − 𝑑(𝑥)𝑢𝑡(𝑥, 𝑡)  (9) 

with classical, i.e. not Dirac distribution type, material functions 𝑘 and 

𝑑. 
Obviously, (8) can be considered a singular limit case of (9), and 

analogously, cases with several different supports can be derived. 
 

 
Fig. 9.Characteristic root curves for Beck’s column with single elastic 
lateral support 
 

A study of the dynamics of an unstable Beck’s column shows that 
the upper part gains quickly kinetic energy. It seems more promising 
to substitute the spring from Figure 8 by a spring/damper or a single 
damper. 

 

 
Fig. 10.Beck’s column with single viscoelastic lateral support 

 

 
Fig. 11.Shift of characteristic root curves in damped case 

 
Figure 11 shows a result obtained for the case of a damping ac-

cording to (9) with a constant function 𝑑 and vanishing 𝑘. Calcula-
tions are based of the exponential form of solutions (4), i.e., we split 
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the wanted solution into a product of anoscillation form function anda 
harmonic time dependence.Discretization in space leads to a matrix 
eigenvalue problem: 

[
0 𝐼

𝜌−1𝐾(𝑃) 𝜌−1𝐷
] [

𝑈
𝑉

] = 𝑖𝜔 [
𝑈
𝑉

] .  (10) 

The dimension of the stiffnessmatrix 𝐾 equals the number of 
nodes we chose in [0,1] for the space discretization. The identity 

matrix 𝐼 and the damping 𝐷are of the same size. Notice that the stiff-

ness matrix 𝐾comprises the term 𝑃𝑢𝑥𝑥 , so it depends on the exter-

nal load𝑃.Consequently, for each load level an eigenvalue problem 
of dimension 2𝑛 has to be solved. The solutions form sets of 

branches in the 𝜔 − 𝑃-space, which is three-dimensional due to the 
fact that the frequency may be complex, not real. We speak about 
complex root curves, see Figure 11 as opposed to the real projections 
in Figures 4 and 9. 

The corresponding first branch of the complex root curve, para-
metrized by the compressive load, is shown in Fig. 11. Comparison 
with the elastic case shows that a shift along the imaginary axis 
causes a slight increase of the critical force. 

Application of an evolutionary strategy allows enhancing this ef-
fect. On the other hand, a bad distribution again may cause a drop of 
the load carrying capacity. 

CONCLUSION 

The stability analysis of elastic columns with damping leads to 
complex eigenvalue problems. At the same level of discretization, the 
matrix dimension doubles.Further, circulatory loads causethe lack of 
symmetry in the matrix formulation. In the effect, the evaluation of the 
critical load, i.e. the onset of instability, has a much higher numerical 
cost. Nonetheless, an increase of the limit load can be achieved by 
application of non-uniform damping distributed along a Beck’s col-
umn. 

So far we have studied here the case of damping depending on 
the lateral velocity of the construction, i.e. a drag force due to inter-
action with an external medium or caused by a lateral support. Damp-
ing may be caused as well by internal dissipation. This means that 

terms featuring the same spatial operators on 𝑢𝑡 as so far applied on 
𝑢 enter the equation. After discretization, a similar problem as in (10) 

is to be solved, where 𝐷 no is no longer a diagonal matrix. Conse-
quently, the computational cost for an optimal distribution of material 
damping – which means for instance the distribution of damping ma-
terial, compare [8], – may be expected to be comparable with that of 
shape optimization. 
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ANALITYCZNE I NUMERYCZNE 
ASPEKTY TŁUMIENIA KOLUMN 

PODDANYCH OBCIĄŻENIOM  
CYRKULACYJNYM 

Streszczenie 

W pracy badany jest wpływ tłumienia na stateczność 

kolumn w przypadku działania obciążeń zmiennych typu 

cyrkulacyjnego. Wykazono możliwość zwiększenia siły 

krytycznej przez dobór rozkładu tłumienia wzdłuż kon-

strukcji analogicznie do optymalizacji kształtu kolumn 

czysto sprężystych. 
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