PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Coalified bitumens from the Kłodawa Salt Structure (central Poland) as evidence on migration of hydrothermal fluids in Zechstein (Upper Permian) deposits

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the results of petrographic and geochemical studies of coaly matter occurring in Stinking Shale and Main Dolomite (PZ2, Upper Permian) deposits in the Kłodawa Salt Structure in central Poland. The coaly matter is both dispersed in the PZ2 shales and carbonates and concentrated in veins which crosscut these deposits and, depending on the location, depicts contrasting maceral composition and the rank of coal. The veins are built of colotellinite and micrinite, showing a mean random reflectance of coal in the range of 1.38–1.40%, whereas the dispersed organic matter is composed mostly of semifusinite and fusinite with minor vitrinite, showing a mean random reflectance of 0.82%. It is interpreted that the heterogeneous composition and rank of coal result from migration of hot fluids within a fracture system developed in the PZ2 shale and carbonate beds. The influx of hot fluids into the organic matter-rich beds led to the generation of bitumen which catagenetically altered along the hot fluid conduits. The coalification of bitumens took place at an early stage of tectonic deformation of the Zechstein salt series, initiated by regional extension and normal displacement on a basement fault, most probably in the Late Permian–Early Triassic.
Rocznik
Strony
555--564
Opis fizyczny
Bibliogr. 39 poz., rys., wykr.
Twórcy
autor
  • AGH Univer sity of Science and Technology, Al. A. Mickiewicza 30, 30-962 Kraków, Poland
autor
  • Univer sity of Wrocław, Institute of Geological Sciences, M. Borna 9, 50-204 Wrocław, Poland
Bibliografia
  • 1. Burliga, S., 1996a. Implications for early basin dynamics of the Mid-Polish Trough from deformational structures within salt deposits in central Poland. Geological Quarterly, 40 (2): 185-202.
  • 2. Burliga, S., 1996b. Kinematics within the Kłodawa salt diapir, central Poland. Geological Society Special Publications, 100: 11-21.
  • 3. Burliga, S., Janiów, S., Sadowski, A., 2005. Mining perspectives in the Kłodawa Salt Mine considering modern knowledge on tec- tonics of the Kłodawa Salt Structure (in Polish with English summary). Technika Poszukiwań Geologicznych Geosynoptyka i Geotermia, 4: 17-25.
  • 4. Burliga, S., Czechowski, F., Hojniak, M., 2008. Gas hazards in the Kłodawa Salt Structure as a Zechstein stratigraphic indicator (in Polish with English summary). Mineral Resources Management, 24: 69-81.
  • 5. Burliga, S., Koyi, H.A., Chemia, Z., 2012. Analogue and numerical model ling of salt supply to a diapiric structure rising above an active basement fault. Geological Society Special Publications, 363: 395-408.
  • 6. Czechowski, F., Burliga, S., Hojniak, M., 2011. Geochemistry of hydrocarbons from the first documented occurrence of Main Dolomite (Ca2) in the Kłodawa Salt Dome (in Polish with English summary). Geologia, 37: 231-244.
  • 7. Dadlez, R., 2003. Mesozoic thickness pattern in the Mid-Polish Trough. Geological Quarterly, 47 (3): 223-240.
  • 8. Dadlez, R., Narkiewicz, M., Stephenson, R.A., Visser, M.T.M., Wees, J-D., van, 1995. Tectonic evolution of the Mid-Polish Trough: modelling implications and significance for central European geology. Tectonophysics, 252: 179-195.
  • 9. Dembicki, H. Jr., 2009. Three common source rock evaluation errors made by geologists during prospect or play appraisals. AAPG Bulletin, 93: 341-356.
  • 10. Espitalié, J., 1986. Use of Tmax as a maturation index for different types of organic matter: comparison with vitrinite reflectance. In: Thermal Modeling in Sedimentary Basins (ed. J. Burrus): 475-496. Editions Technip, Paris.
  • 11. Galushkin, Y.I., 1997. Thermal effects of igneous intrusions on maturity of organic matter: a possible mechanism of intrusion. Organic Geochemistry, 26: 645-658.
  • 12. Hoffmann, P., Leythaeuser, D., 1995. Migration of hydrocarbons in carbonate source rocks of the Stassfurt member (Ca2) of the Permian Zechstein, borehole Aue 1, Germany: the role of solution seams. Organic Geochemistry, 23: 597-606.
  • 13. Karnkowski, P.H., 2007. Perm i an Basin as a main exploration target in Poland. Przegląd Geologiczny, 55: 1003-1015.
  • 14. Koch, J., 1970. Braunkohlenharze, Verwitterung und Verkohlung von Harzen. Erdöl und Kohle, 23: 633-638.
  • 15. Kotarba, M., Wagner, R., 2007. Generation potential of the Zechstein Main Dolomite (Ca2) carbonates in the Gorzów Wielkopolski-Międzychód-Lubiatów area, geological and geochemical approach to microbial-algal source rock. Przegląd Geologiczny, 55: 1025-1036.
  • 16. Kotarba, M.J., Więcław, W., Stecko, Z., 2000. Composition, origin and habitat of natural gases in the Zechstein Main Dolomite strata of the western part of the Fore-Sudetic area (SW Poland) (in Polish with English summary). Przegląd Geologiczny, 48: 429-435.
  • 17. Kotarba, M.J., Peryt, T.M., Kosakowski, P., Więcław, D., 2006. Organic geochemistry, depositional history and hydrocarbon generation modelling of the Upper Permian Kupferschiefer and Zechstein Limestone strata in south-west Poland. Marine and Petroleum Geology, 23: 371-386.
  • 18. Krevelen, D.W., van, 1950. Graphical-statistical method for the study of structure and reaction processes of coal. Fuel, 29: 269-84.
  • 19. Krzywiec, P., 2004. Triassic evo i u tion of the Kłodawa Salt Structure: basement-cont rolled salt tectonics within the Mid-Polish Trough (Central Poland). Geological Quarterly, 48 (2): 123-134.
  • 20. Krzywiec, P., 2012. Mesozoic and Cenozoic evolution of salt structures within the Polish basin: an overview. Geological Society Special Publications, 363: 381-394.
  • 21. Lampe, C., Person, M., 2000. Episodic hydrothermal fluid flow in the Upper Rhinegraben (Germany). Journal of Geochemical Exploration, 69-70: 37-40.
  • 22. Leythaeuser, D., Borromeo, O., Mosca, F., Di Primio, R., Radke, M., Schaefer, R.G., 1995. Pressure solution in carbonate source rocks and its control on petroleum generation and migration. Journal of Marine and Petroleum Geology, 12: 717-733.
  • 23. Lockhorst, A., ed., 1998. NW European Gas Atlas. British Geological Survey, Bundesanstalt für Geowissenschaften und Rohstoffe, Danmarks og Gronlands Geologiske Undersogelse, Nederlands Instituut voor Toegepaste Geowetenschappen, Państwowy Instytut Geologiczny, European Union.
  • 24. Losh, S., Eglinton, L.B., Schoell, M., Wood, J.R., 1999. Vertical and lateral fluid flow related to a large growth fault, South Eugene Island Block 330 Field, offshore Louisiana. AAPG Bulletin, 83: 244-276.
  • 25. Madej, S., Burliga, S., Drzewicki, W., 2011. Calcite-fluorite paragenesis in Zechstein rocks of the Kłodawa Salt Dome - preliminary data. Mineralogia - Special Papers, 38: 133-134.
  • 26. Nandi, B., Montgomery, D.S., 1967. Thermal behaviour of massive and granular micrinite. Fuel, 46: 394-398.
  • 27. Othmana, R., Arourib, K.R., Warda, C.R., McKirdy, D.M., 2001. Oil generation by igneous intrusions in the northern Gunnedah Basin, Australia. Organic Geochemistry, 32: 1219-1232.
  • 28. Peryt, T.M., Geluk, M.C., Mathiesen, A., Paul, J., Smith, K., 2010. Zechstein. In: Petroleum Geological Atlas of the Southern Permian Basin Area (eds. J.C. Doornenbal and A.G. Stevenson): 123-147. EAGE Publications, b.v. (Houten).
  • 29. Peters, K.E., 1986. Guidelinesforevaluating petroleum source rock using programmed pyrolysis. AAPG Bulletin, 70: 318-329.
  • 30. Schoenherr, J., Littke, R., Urai, J.L., Kukla, P.A., Rawahi, Z., 2007a. Polyphase thermal evoluton in the Infra-Cambrian Ara Group (South Oman Salt Basin) as deduced by solid bitumen maturity. Organic Geochemistry, 38: 1293-1318.
  • 31. Schoenherr, J., Urai, J.L., Kukla, P.A., Littke, R., Schléder, Z., Larroque, J.M., Newall, M.J., Al-Abry, N., Al-Siyabi, H.A., Rawahi, Z., 2007b. Limits to the sealing capacity of rock salt: A case study of the Infra-Cambrian Ara Salt from the South Oman Salt Basin. AAPG Bulletin, 91: 1541-1557.
  • 32. Simoneit, B.R.T., Summerhayes, C.P., Meyers, P.A., 1986. Sources and hydrottiermal alteration of organic matter in Quaternary sediments: a synthesis of studies from the Central Gulf of California. Marine and Petroleum Geology, 3: 282-297.
  • 33. Słowakiewicz, M., Mikołajewski, Z., 2011. Upper Permian Main Dolomite microbial carbonates as potential source rocks for hydrocarbons (W Poland). Marine and Petroleum Geology, 28: 1572-1591.
  • 34. Stach, E., Mackovsky, M., Teichmüller, M., Taylor, G.H., Chandra, D., Teichmüller, R., 1982. Coal Petrology. Gebrüder Bornträger, Berlin-Stuttgart.
  • 35. Szafran, S., Wagner, M., 1999. Petrologic studi es of Miocene organic matter in eastern part of the Carpathian Foredeep, Southern Poland (in Polish with English summary). Zeszyty Naukowe Politechniki Śląskiej, 243: 131-138.
  • 36. Teichmüller, M., 1974. Über neue Macerale der Liptinit-Gruppe und die Entstehung des Micrinits. Fortschritte in der Geologie von Rheinland und Westfalen, 24: 37-64.
  • 37. Wagner, R., 1994. Stratigraphy of deposits and development of Zechstein Basin in Polish Lowlands (in Polish with English summary). Prace Państwowego Instytutu Geologicznego, 146: 5-62.
  • 38. Wagner, R., 1998. Zechstein. In: Palaeogeographical Atlas of the Epicontinental Permian and Mesozoic in Poland (1:2 500 000) (eds. R. Dadlez, S. Marek and J. Pokorski). Polish Geological Institute, Warszawa.
  • 39. Ziegler, P.A., 1990. Geological Atlas of Central and Western Europe. Second edition, Shell Internationale Petroleum Maatschappij B.V., Geological Society Publishing House: 74-77.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2de984fb-ad94-43d8-85c1-102330026af4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.