Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Highly-transparent trivalent erbium ion doped calcium fluoride (5 mol % Er:CaF2) ceramics were fabricated by a hotpressing (HP) method using high-purity Er:CaF2 nanoparticles, which were synthesized by co-precipitation method. The mean grain size of the nanoparticles was about 24.7 nm. The nanoparticles were sintered at 600 respectively, for 30 min under a uniaxial pressure of 30 MPa and vacuum of 10-3 Pa with 1 mol % lithium fluoride (LiF) as sintering additive. The 5 mol % Er:CaF2 ceramics sintered at 800 C exhibits high density and pore-free microstructure with an average grain size of about 8 μm. The optical transmittance of the transparent ceramics is close to 85 % at visible and nearinfrared wavelengths. The strong and broad absorptions peaks corresponding to characteristic absorption of trivalent erbium ions make the ceramics a potential candidate for infrared and upconversion laser operating.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
358--363
Opis fizyczny
Bibliogr. 15 poz., rys., wykr.
Twórcy
autor
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P.R. China
autor
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P.R. China
autor
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P.R. China
autor
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P.R. China
Bibliografia
- [1] SHIRAKAWA A., TAKAICHI K., YAGI H., BISSON J., LU J., MUSHA M., UEDA K., YANAGITANI T., PETROV T., KAMINSKII A., Opt. Express, 11 (2003) 2911.
- [2] LU J., BISSON J.F., TAKAICHI K., UEMATSU T., SHIRAKAWA A., Appl. Phys. Lett., 83 (2003) 1101.
- [3] UWE G., VALENTIN P., KLAUS P., VOLKER P., Opt. Express, 12 (2004) 3125.
- [4] IKESUE A., KINOSHITA T., KAMATA K., YOSHIDA K., J. Am. Ceram. Soc., 78 (1995) 1033.
- [5] HATCH S.E., PARSON W.F., WEAGLEY R.J., Appl. Phys. Lett., 5 (1964) 153.
- [6] AUBRY P., BENSALAH A., GREDIN P., PATRIARCHE G., VIVIEN D., MORTIER M., Opt. Mater., 31 (2009) 750.
- [7] LI W.W., MEI B.C., LI X.N., SONG J.H., ZHI G.L., Key Eng. Mater., 531 – 532 (2012), 307.
- [8] SINGH S.G., SHASHWATI SEN, PATRA G.D., BHATTACHARYA S., SINGH A.K., SEEMA SHINDE, GADKARI S.C., Nucl. Instrum. Meth. B, 287 (2012), 51.
- [9] AKCHURIN M.SH., BASIEV T.T., DEMIDENKO A.A., DOROSHENKO M.E., FEDOROV P.P., GARIBIN E.A., GUSEV P.E., KUZNETSOV S.V., KRUTOV M.A., MIRONOV I.A., OSIKO V.V., POPOV P.A. Opt. Mater., 35 (2013), 444.
- [10] LABBE C., DOUALAN J.L., CAMY P., MONCORGE R., THUAU M., Opt. Commun., 209 (2002), 193.
- [11] GRIGOR’EVA N.B., OTROSHCHENKO L.P., MAKSIMOV B.A., ZHUROVA E.A., SOBOLEV B.P., SIMONOV V.I., Crystallogr. Rep.+, 41 (1996), 45.
- [12] KRELL A., HUTZLER T., KLIMKE J., J. Eur. Ceram. Soc., 29 (2009), 207.
- [13] MALITSON I.H., Appl. Optics, 2 (1963), 1103.
- [14] LYBERIS A., PATRIARCHE G., GREDIN P., VIVIEN D., MORTIER M., J. Eur. Ceram. Soc., 31 (2011), 1619.
- [15] KUMAR G.A., RIMAN R., CHAE S.C., JANG Y.N., BAE I.K., MOON H.S., J. Appl. Phys., 95 (2004), 3243.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2de0b667-592a-4885-a21b-531d9cb4caae