PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Simulation model of traction electric drive of AC electric locomotive equipped with collector electric motors

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Model symulacyjny trakcyjnego napędu elektrycznego lokomotywy prądu przemiennego wyposażonej w kolektorowe silniki elektryczne
Języki publikacji
EN
Abstrakty
EN
An approach to simulation modeling of traction electric drives of electric locomotives with collector engines is proposed which based on taking into account the nonlinear nature of the magnetic characteristic in electric motors, the inductances of the armature and the excitation winding of the electric motor, the nonlinearity of the volt-amperage characteristics of the rectifier unit and the features of the operation of the stage control system of the electric drive.
PL
Zaproponowano podejście do modelowania symulacyjnego elektrycznych napędów trakcyjnych lokomotyw elektrycznych z silnikami kolektorowymi, oparte na uwzględnieniu w silnikach elektrycznych nieliniowości charakterystyki magnetycznej, indukcyjności twornika i uzwojenia wzbudzenia silnika elektrycznego, nieliniowości charakterystyki napięciowo-napięciowej zespołu prostownikowego oraz cech działania układu sterowania stopniowego napędu elektrycznego.
Rocznik
Strony
118--127
Opis fizyczny
Bibliogr. 35 poz., rys., tab., wykr.
Twórcy
  • The State University of Infrastructure and Technologies, Department of Electromechanics and Rolling Stock of Railways
  • National Technical University «Kharkiv Polytechnic Institute», Department of Electric Transport and Locomotive Engineering
  • The State University of Infrastructure and Technologies, Department of Electromechanics and Rolling Stock of Railways
  • National Technical University Kharkiv Polytechnic Institute, Department of Electric Transport and Locomotive Engineering
Bibliografia
  • [1] Turpak, S., M., Taran, I. O., Fomin, O. V., Tretiak, O. O. Logistic technology to deliver raw material for metallurgical production, Scientific Bulletin of National Mining University, pp. 162-169, 2018.
  • [2] Klimenko, I., Kalivoda, J., Neduzha, L. Parameter Optimization of the Locomotive Running Gear, Proc. of 22nd Intern. Scientific Conf. «Transport Means. 2018», pp. 1095-1098, 2018.
  • [3] Leitner, B., Rehak, D., Kersys, R. The new procedure for identification of infrastructure elements significance in sub-sector railway transport, Communications-Scientific letters of the University of Zilina, vol. 20, no 2, pp. 41-48, 2018.
  • [4] Wang, X., Peng, T., Wu, P., Cui, L. Influence of electrical part of traction transmission on dynamic characteristics of railway vehicles based on electromechanical coupling model, Scientific Reports, vol., 11, no 1, pp. 1-22, 2021.
  • [5] Liu, L., Dai, N., Lao, K. W., Song, Y. Nonuniform power factor partial compensation for compensating current reduction using particle swarm optimization in traction power supply system, IEEE Transactions on Industrial Electronics, vol. 69 no 6, pp. 6140-6151, 2021.
  • [6] Wang, X., Shi, G. Analysis of harmonic influence of improved PFC circuit on SS4G electric locomotive. In Journal of Physics: Conference Series, vol. 2260, no. 1, p. 012032, IOP Publishing, 2022.
  • [7] Hanafy, A. M., Hebala, O. M., Hamad, M. S. Power Quality Issues in Traction Power Systems, In 2021 22nd International Middle East Power Systems Conference (MEPCON), pp. 188-193. IEEE, 2021.
  • [8] Ruban, M., Ponomarenko, V. Development and construction of shunting electric locomotives at Dnipropetrovsk electric locomotives plant (1960's–1970's), History of science and technology, vol. 11, no 1, pp. 212-232, 2021.
  • [9] Abdumutallib o‘g‘li, E. A. Reliability of Collector (Bottle) Set in ACS, Texas Journal of Multidisciplinary Studies, vol. 8, pp. 251-255, 2022.
  • [10] Goolak, S., Tkachenko, V., Bureika, G., Vaičiūnas, G. Method of spectral analysis of traction current of AC electric locomotives, Transport, vol. 35, no 6, pp. 658-668, 2020.
  • [11] Kritsanasuwan, K., Ratniyomchai, T., Kulworawanichpong, T. Study of Harmonic and Simulation of an AC Electric Railway System, In 2021 International Conference on Power, Energy and Innovations (ICPEI), pp. 73-76, IEEE, 2021,
  • [12] Zhu, J., Hu, H., He, Z., Guo, X., Pan, W. A power-quality monitoring and assessment system for high-speed railways based on train-network-data center integration, Railway Engineering Science, vol. 29, no 1, pp. 30-41, 2021.
  • [13] Wu, S., Wu, M., Wang, Y. A novel co-phase power-supply system based on modular multilevel converter for high-speed railway AT traction power-supply system, Energies, vol. 14, no1, pp. 253-269, 2021.
  • [14] Energy market operator. Analytical materials. Available at: https://www.oree.com.ua/index.php/web/10337.
  • [15] GOST 13109-97. Power quality standards in general purpose power supply systems. Available at: http://online.budstandart.com/ua/catalog/docpage?id_doc=25837.
  • [16] Arabahmadi, M., Banejad, M., Dastfan, A. Hybrid compensation method for traction power quality compensators in electrified railway power supply system, Global Energy Interconnection, vol. 4, no 2, pp. 158-168, 2021.
  • [17] Liu, L., Zhou, Z., Dai, N., Lao, K. W., Son, Y. Interpolated Phase-Shifted PWM for Harmonics Suppression of Multilevel Hybrid Railway Power Conditioner in Traction Power Supply System, IEEE Transactions on Transportation Electrification, vol. 8, no. 1, pp. 898-908, 2021.
  • [18] Evseev, V. Y., Savos’kin, A. N. A Mathematical Model of a Collector Traction Motor with Separate Consideration of Eddy Currents of the Main and Additional Poles, Russian Electrical Engineering, vol. 91, no 9, pp. 557-563, 2020.
  • [19] Litovchenko, V.V., Nazarov, D.V. Sharov, V.A. Simulation Model of a Direct-Current Electric Locomotive with Commutator Traction Motors, Russ. Electr. Engin, vol. 91, pp. 69–76, 2020.
  • [20] Spiryagin, M., Wolfs, P., Cole, С., Spiryagin, V., Sun, Y. Q., McSweeney, T. Design and Simulation of Heavy Haul Locomotives and Train, New York, Taylor & Francis Group, 477 р., 2016.
  • [21] Kharchenko, V., Kostenko, I., Liubarskyi, B., Shaida, V., Kuravskyi, M., Petrenko, О. Simulating the Traction Electric Drive Operation of a Trolleybus Equipped With Mixed Excitation Motors and a DC-DC Converter, Eastern-European Journal of Enterprise Technologies, vol. 3(9), no 105, 46-54, 2020.
  • [22] Liu, R., Li, L. Calculation Method of Magnetic Material Losses Under DC Bias Using Statistical Loss Theory and Energetic Hysteresis Model, IEEE Transactions on Magnetics, vol. 55, no 10, pp. 1-4, 2019.
  • [23] Zhang, H., Mueller, M. Electromagnetic properties of curved HTS trapped field stacks under high-frequency cross fields for high-speed rotating machines, Superconductor Science and Technology, vol. 34, no 4, pp. 045018, 2021.
  • [24] Kwon, H., Park, H. Numerical Investigation of Optimal Air Flowrate for Cooling 600 W Brushless Direct-Current Motor, Journal of Thermal Science and Engineering Applications, vol. 13, no 4, pp. 041008, 2021.
  • [25] Goolak, S., Sapronova, S., Tkachenko, V., Riabov, I., Batrak, Y. Improvement of the model of power losses in the pulsed current traction motor in an electric locomotive, Eastern-European Journal of Enterprise Technologies, vol. 6, no 5(108), pp. 36-46, 2020.
  • [26] Goolak, S., Riabov, I., Tkachenko, V., Sapronova, S., Rubanik, I. Model of pulsating current traction motor taking into consideration magnetic losses in steel, Electrical Engineering & Electromechanics, vol. 6, pp. 11-17, 2021.
  • [27] Chiriac, G., Nituca, C., Sticea, D. Electric Locomotive Laboratory Test Bench for Research and Educational Purposes, In 2019 8th International Conference on Modern Power Systems (MPS, pp. 1-4. IEEE), 2019.
  • [28] Elagab, A.M., El-Amin, I.M. The Impact of Electrical Traction Drives on Power System Quality under Different Loading Conditions, Arab J Sci Eng, pp. 1-16, 2022.
  • [29] Ray, D.K., Rai, A., Khetan, A.K. et al. Brush Fault Analysis for Indian DC Traction Locomotive Using DWT-Based Multi-resolution Analysis, J. Inst. Eng. India Ser. B, vol. 101, pp. 335–345, 2020.
  • [30] Kovalov, V., Kovalova, Yu., Shcherbak, I. Mechanical Power of DC Motors with Polygarmonic Power Supply, Problemele energeticii regionale, vol. 1, no 53, pp. 1-9, 2022.
  • [31] Goolak, S., Yermolenko, E., Tkachenko, V., Sapronova, S., Yurchenko, V. Determination of Voltage at the Rectifier Installation of the Electric Locomotive Vl-80K for Each Position of the Controller Driver’s, Technology Audit and Production Reserves, vol. 1, no 1(63), pр 23-29, 2022.
  • [32] Electric locomotive VL-80K, Manual, «Transport», p. 432, 1978.
  • [33] Martins, A., Morais, V., Ramos, C., Carvalho, A., Afonso, J. L. Optimizing the train-catenary electrical interface in AC railways through dynamic control reconfiguration, EAI Endorsed Transactions on Energy Web, vol.7, no. 25, pp. 1-14, July 2019.
  • [34] Rajaby, E., Sayedi, S. M. A structured review of sparse fast Fourier transform algorithms, Digital Signal Processing, vol. 123, pp. 103403, 2022.
  • [35] Zarifyan, A. A., Talakhadze, N. V. Comparative research of electrical energy transformation processes in locomotive traction drives with asynchronous motors and series-wound brushed DC motors, In Journal of Physics: Conference Series, vol. 2131, no. 4, p. 042079, IOP Publishing, December, 2021.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2ddfcc2e-8ab7-4d09-a66b-85401a2be4b5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.