Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A technological quality method was used to compare two methods of sodium tripolyphosphate (STPP) production. The first method was the classic spray method (CM) and the second was a dry single-stage method (DSM). The assessment criteria were environmental, based on Life Cycle Assessment (LCA) evaluation and economic, based on production costs. The technological quality assessment of CM was 6.5% lower in comparison to DSM. LCA environmental analyses showed that the partial environmental quality of DSM was lower by only 4.4% compared to CM. Partial economic quality was lower by 10.3%, mainly due to the lower energy costs (on average 52%) for DSM. The advantage of the new DSM method is the technological progress achieved, mainly due to the application of new technology, design, and apparatus solutions; thus, the basic elements of the activities proposed in the methodology allow for cleaner STPP production.
Czasopismo
Rocznik
Tom
Strony
48--54
Opis fizyczny
Bibliogr. 33 poz., rys., tab., wykr., wz.
Twórcy
autor
- Mineral and Energy Economy Research Institute, Polish Academy of Sciences, Wybickiego 7, 31-261 Kraków, Poland
autor
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland
autor
- Mineral and Energy Economy Research Institute, Polish Academy of Sciences, Wybickiego 7, 31-261 Kraków, Poland
autor
- AGH University of Science and Technology, Faculty of Management, Gramatyka 10, 30-067 Kraków, Poland
autor
- Mineral and Energy Economy Research Institute, Polish Academy of Sciences, Wybickiego 7, 31-261 Kraków, Poland
Bibliografia
- 1. Dymon, J.J. & King, A.J. (1951). Structure studies of the two forms of sodium tripolyphosphate. Acta Crystallogr. 4, 378–379. DOI: .
- 2. Van Wazer, J.R. (1958). Phosphorus and Its Compounds (Vol. 1). New York: Interscience Publishers.
- 3. Różyńska, M. & Linkiewicz, K. (1999). Modern detergents. Przem. Chem. 78(5), 168–171.
- 4. Rashchi, F. & Finch, J.A. (2000). Polyphosphates: a review their chemistry and application with particular reference to mineral processing. Miner. Eng. 13(10–11), 1019–1035. DOI: .
- 5. Köhler, J. (2001, March). Detergent phosphates and detergent ecotaxes: a policy assessment. Retrieved April 25, 2018, from https://pdfs.semanticscholar.org/5877/00152e439150b64593f8be0255dbd284c706.pdf.
- 6. Makara, A. & Kowalski, Z. (2017). Cleaner technologies of sodium tripolyphosphate production. Edited by MEERI Polish Academy of Sciences. Studies, Dissertations, Monographs, 204, Cracow.
- 7. Goberis, S., Pundene, I. & Antonovich, V. (2005). The effect of sodium tripolyphosphate on the properties of medium – cement refractory castables based on Gorkal-40 cement. Refract. Ind. Ceram. 46(6), 403–408. DOI: .
- 8. Ltifi, M., Guefrech, A. & Mounanga, P. (2012). Effects of sodium tripolyphosphate on the rheology and hydration rate of Portland cement pastes. Adv. Cem. Res. 24(6), 325–335. DOI: .
- 9. Tan, H., Huang, J., Ma, B. & Li, X. (2014). Effect of superplasticiser and sodium tripolyphosphate on fluidity of cement paste. Mag. Concr. Res. 66(23), 1194–1200. DOI: .
- 10. Aksu, M.İ. & Alp, E. (2012). Effects of sodium tripolyphosphate and modified atmosphere packaging on the quality characteristics and storage stability of ground beef. Food Technol. Biotechnol. 50(1), 81–87.
- 11. Gonçalves, A.A. & Ribeiro, J.L.D. (2008). Do phosphates improve the seafood quality? Reality and legislation. Panam J. Aquat Sci. 3(3), 237–247.
- 12. Global Sodium Tripolyphosphate (STPP) Market. (2017). Trends Analysis & Forecasts to 2022. Retrieved March 22, 2017, from https://www.infiniumglobalresearch.com/chemical_material/global_sodium_tripolyphosphate_stpp_market.
- 13. Makara, A. & Kowalski, Z. (2013). Study on production of sodium tripolyphosphate by one-stage dry method using wet-process phosphoric acid. Przem. Chem. 92(6), 1121–1124.
- 14. Kowalski, Z. & Makara, A. (2014). The synthesis of tripolyphosphate using a one-stage method and a laboratory rotary kiln. Pol. J. Chem. Technol. 16(1), 36–40. DOI: .
- 15. Makara, A., Generowicz, A. & Kowalski, Z. (2019). Assessment and comparison of technological variants of the sodium tripolyphosphate production with the use of multicriteria analysis. Int. J. Environ. Sci. Technol. 16(4), 2069–2082. DOI: .
- 16. Kowalski, Z., Generowicz, A., Makara, A. & Kulczycka, J. (2015). Evaluation of municipal waste landfilling using the technology quality assessment method. Environ. Prot. Eng. 41(4), 167–179. DOI: .
- 17. Generowicz, A., Kulczycka, J., Kowalski, Z. & Banach, M. (2011). Assessment of waste management technology using BATNEEC options, technology quality method and multicriteria analysis. J. Environ. Manage. 92(4), 1314–1320. DOI: .
- 18. Goedkoop, M.A.J., Heijungs, R., Huijbregts, M., De Schryver, A., Struijs, J. & Van Zelm, R. (2009). ReCiPe 2008: A life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level. First edition, Report I: Characterisation.
- 19. International Organization for Standardization. (2006). Environmental Management — Life Cycle Assessment — Principles and framework. ISO 14040:2006. Geneva.
- 20. International Organization for Standardization. (2006). Environmental management — Life Cycle Assessment — Requirements and guidelines. ISO 14044:2006. Geneva.
- 21. Guinée, J.B. (2002). Handbook on Life Cycle Assessment. Operational Guide to the ISO Standards. Dordrecht/Boston/London: Kluwer Academic Publishers.
- 22. Notarnicola, B., Salomone, R., Petti, L., Renzulli, P.A., Roma, R. & Cerutti, A.K. (2015). Life cycle assessment in the agri-food sector: Case studies, methodological issues and best practices. Switzerland: Springer International Publishing.
- 23. SimaPro 8.0.4.3 User Manual. 2016.
- 24. European Commission, Joint Research Centre (2010). Analysis of existing environmental impact assessment methodologies for use in life cycle assessment. ILCD Handbook. First edition, International Reference Life Cycle Data System, European Union. Retrieved April 28, 2018 from http://eplca.jrc.ec.europa.eu/uploads/ILCD-Handbook-LCIA-Background-analysis-online-12March2010.pdf.
- 25. European Commission, Joint Research Centre. (2012). Characterisation factors of the ILCD Recommended Life Cycle Impact Assessment methods. Database and Supporting Information. First edition, EUR 25167. Publications Office of the European Union, Luxembourg. Retrieved April 28, 2018, from http://eplca.jrc.ec.europa.eu/uploads/LCIA-characterization-factors-of-the-ILCD.pdf.
- 26. Edwards, J.W. & Herzog, A.H. (1957). The mechanism of formation of sodium triphosphate from orthophosphate mixtures. J. Ame. Chem. Soc. 79(14), 3647–3650. DOI: .
- 27. Banach, M. & Makara, A. (2011). Thermal Decomposition of Sodium Phosphates. J. Chem. Eng. Data 56(7), 3095–3099. DOI: .
- 28. Makara, A., Smol, M., Kulczycka J. & Kowalski Z. (2016). Technological, environmental and economic assessment of sodium tripolyphosphate production – a case study. J. Clean. Prod. 133, 243–251. DOI: .
- 29. Makara, A., Wzorek, Z., Kowalski, Z. & Banach M. (2009). Effect of calcination time and temperature on the formation of sodium tripolyphosphate. Przem. Chem. 88(5), 499–504.
- 30. Makara, A., Kowalski, Z. & Banach M. (2011). Effect of chemical composition of phosphoric acid on the formation of sodium tripolyphosphate. Przem. Chem. 90(5), 900–903.
- 31. Makara, A., Kowalski, Z. & Banach M. (2012). Control of phase composition of sodium tripolyphosphate at varying parameters of calcination and product recycling. Przem. Chem. 91(5), 860–864.
- 32. Kowalski, Z. & Kulczycka, J. (2004). Cleaner production as a basic element for the sustainable development strategy. Pol. J. Chem. Technol. 6(4), 35–40.
- 33. Kowalski, Z. & Makara, A. (2017). Comparison of technologies for the sodium tripolyphosphate production by conventional spray and new one-stage dry methods. Przem. Chem. 96(1), 187–192.
Uwagi
This work was funded by the Polish National Agency for Academic Exchange (NAWA) as the part of the project “International cooperation for Rational Use of Raw Materials and Circular Economy” (COOPMIN) which is conducted in the Division of Strategic Research in the MEERI PAS (2019–2020), project no. PPI/ APM/2018/1/00003.
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2ddae802-d1cf-4d0a-8826-3c52375c4191