PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Hydrothermal Synthesis and Characterization of Sodium Bismuth Titanatefor Photocatalytic Applications

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Sodium bismuth titanate (Na0.5Bi0.5TiO3, abbreviated NBT) ceramics underwent concurrent successful synthesis on the basis of the hydrothermal method. A selected low-temperature process of thermal treatment was conducted to obtain a highly dense morphology, produced from high purity carbonates and oxides serving as initial precursors. The presence of well-crystallized NBT in the rhombohedral phase was also found at hydrothermal temperatures of 200 °C. X-ray diffraction (DRX), Raman spectroscopy, Infrared spectroscopy (IR), and Scanning electron microscopy (SEM) analysis enabled to verify the structure, phase, morphology, and composition of the used samples. NBT ceramics exhibit features specific to relaxor ferroelectrics, with a diffusion exponent γ of up to 1.5 to promote their applications in micro-electromechanical and energy harvesting systems. The photocatalytic behaviors of NBT powders have been assessed by means of the degradation of methylene blue (MB) through UV-light irradiation. The samples prepared with precursors having a Na/Bi ratio of 0.5/0.5 showed the highest methylene blue (MB) photodegradation rate of 100% under UV irradiation for 420 minutes. In addition, photocatalytic activities under different masses and pH values were discussed for the first time. In addition, the photocatalyst has excellent stability, due to the larger particle size and surface area, which opens up new possibilities for the design of multi-component photocatalysts for future applications. The photocatalytic mechanism for the degradation of organic dyes (MB) has been principally assigned to the photoreduction process caused by superoxide radical anions (O2−) and hydroxyl radicals (OH).
Rocznik
Strony
185--197
Opis fizyczny
Bibliogr. 61 poz., rys., tab.
Twórcy
  • Signals, Systems and Components Laboratory (LSSC), Faculty of Sciences and Technologies of Fez, Sidi Mohamed Ben Abdellah University, B.P. 2022, Imouzzer Road, Fez, Morocco
  • Signals, Systems and Components Laboratory (LSSC), Faculty of Sciences and Technologies of Fez, Sidi Mohamed Ben Abdellah University, B.P. 2022, Imouzzer Road, Fez, Morocco
  • Department of Physics-Chemistry, Polydisciplinary Faculty of Ouarzazate, University of Ibn Zohr, Ouarzazate, Morocco
  • Laboratory of Processes, Materials and Environment (LPME), Faculty of Sciences and Technologies of Fez, Sidi Mohamed Ben Abdellah University, B.P. 2022, Imouzzer Road, Fez, Morocco
autor
  • Signals, Systems and Components Laboratory (LSSC), Faculty of Sciences and Technologies of Fez, Sidi Mohamed Ben Abdellah University, B.P. 2022, Imouzzer Road, Fez, Morocco
  • Signals, Systems and Components Laboratory (LSSC), Faculty of Sciences and Technologies of Fez, Sidi Mohamed Ben Abdellah University, B.P. 2022, Imouzzer Road, Fez, Morocco
  • Signals, Systems and Components Laboratory (LSSC), Faculty of Sciences and Technologies of Fez, Sidi Mohamed Ben Abdellah University, B.P. 2022, Imouzzer Road, Fez, Morocco
Bibliografia
  • 1. Ammuri, A, S Hejiouej, K Ziat, and M Saidi. 2014. Photodegradation of Methyl Orange in Solution in Presence of Bismuth Trioxide. Environ. Sci 5 (S1): 2066–72.
  • 2. Azeez, Fadhel, Entesar Al-Hetlani, Mona Arafa, Yasser Abdelmonem, Ahmed Abdel Nazeer, Mohamed O. Amin, and Metwally Madkour. 2018. The Effect of Surface Charge on Photocatalytic Degradation of Methylene Blue Dye Using Chargeable Titania Nanoparticles. Scientific Reports 8 (1): 1–9. https://doi.org/10.1038/s41598-018-25673-5.
  • 3. Baerlocher, Christian, and Lynne B. McCusker. 1994. Practical Aspects of Powder Diffraction Data Analysis. Studies in Surface Science and Catalysis 85 (C): 391–428. https://doi.org/10.1016/S0167-2991(08)60775-2.
  • 4. Barick, B. K., K. K. Mishra, A. K. Arora, R. N.P. Choudhary, and Dillip K. Pradhan. 2011. Impedance and Raman Spectroscopic Studies of (Na0.5Bi 0.5) TiO3. Journal of Physics D: Applied Physics 44 (35). https://doi.org/10.1088/0022-3727/44/35/355402.
  • 5. Bhattacharyya, Rahul, Soumitra Das, Amit Das, and Shobit Omar. 2021. Effect of Sintering Temperature on the Microstructure and Conductivity of Na0.54Bi0.46Ti0.99Mg0.01O3-δ. Solid State Ionics 360 (February): 115547. https://doi.org/10.1016/J.SSI.2020.115547.
  • 6. Bhattacharyya, Rahul, Soumitra Das, and Shobit Omar. 2019. Long-Term Conductivity Stability of Acceptor-Doped Na0.54Bi0.46TiO3−δ. Solid State Ionics 330 (February): 40–46. https://doi.org/10.1016/J.SSI.2018.12.009.
  • 7. Bhattacharyya, Rahul, and Shobit Omar. 2018. Influence of Excess Sodium Addition on the Structural Characteristics and Electrical Conductivity of Na0.5Bi0.5TiO3. Solid State Ionics 317 (April): 115–21. https://doi.org/10.1016/J.SSI.2018.01.016.
  • 8. Birol, Hansu, Dragan Damjanovic, and Nava Setter. 2005. Preparation and Characterization of KNbO3 Ceramics. Journal of the American Ceramic Society 88 (7): 1754–59. https://doi.org/10.1111/j.1551-2916.2005.00347.x.
  • 9. Blum, Winfried E.H. 2013. Soil and Land Resources for Agricultural Production: General Trends and Future Scenarios-A Worldwide Perspective. International Soil and Water Conservation Research 1 (3): 1–14. https://doi.org/10.1016/S2095-6339(15)30026-5.
  • 10. Chen, Xiyong, Jie Zeng, Xia Yan, Mingxin Zhou, Peng Tang, Tianquan Liang, and Weizhou Li. 2017. Effects of Bi Deficiency on the Microstructural and Conductive Properties of Na0.5Bi0.5TiO3 (NBT) Perovskites. Solid State Ionics 309 (October): 152–62. https://doi.org/10.1016/J.SSI.2017.07.024.
  • 11. Echatoui, NS, T Lamcharfi - … & chemical news, and undefined 2005. n.d. Diffuse Phase Transition and Relaxation Behavior in Hydrothermally Processed PLZT Ceramics. Physical and Chemical News.
  • 12. Elhorst, J. Paul. 2014. Matlab Software for Spatial Panels. International Regional Science Review 37 (3): 389–405. https://doi.org/10.1177/0160017612452429.
  • 13. Eric Cross, L. 1987. Relaxor Ferroelecirics. Ferroelectrics 76 (1): 241–67. https://doi.org/10.1080/00150198708016945.
  • 14. Fan, Gongduan, Zhong Chen, Zhongsen Yan, Banghao Du, Heliang Pang, Dingsheng Tang, Jing Luo, and Jiuyang Lin. 2021. Efficient Integration of Plasmonic Ag/AgCl with Perovskite-Type La-FeO3: Enhanced Visible-Light Photocatalytic Activity for Removal of Harmful Algae. Journal of Hazardous Materials 409 (May): 125018. https://doi.org/10.1016/J.JHAZMAT.2020.125018.
  • 15. Fouilleux, Eve, Nicolas Bricas, and Arlène Alpha. 2017. Feeding 9 Billion People’: Global Food Security Debates and the Productionist Trap. Journal of European Public Policy 24 (11): 1658–77. https://doi.org/10.1080/13501763.2017.1334084.
  • 16. González-Pleiter, Miguel, Soledad Gonzalo, Ismael Rodea-Palomares, Francisco Leganés, Roberto Rosal, Karina Boltes, Eduardo Marco, and Francisca Fernández-Piñas. 2013. Toxicity of Five Antibiotics and Their Mixtures towards Photosynthetic Aquatic Organisms: Implications for Environmental Risk Assessment. Water Research 47 (6): 2050–64. https://doi.org/10.1016/J.WATRES.2013.01.020.
  • 17. Goutham, Cilaveni, Kinjarapu Venkata Ashok Kumar, Sai Santosh Kumar Raavi, Challapalli Subrahmanyam, and Saket Asthana. 2021. Enhanced Electrical and Photocatalytic Activities in Na0.5Bi0.5TiO3 through Structural Modulation by Using Anatase and Rutile Phases of TiO2. Journal of Materiomics, no. xxxx. https://doi.org/10.1016/j.jmat.2021.06.003.
  • 18. He, Rong’an, Shaowen Cao, Peng Zhou, and Jiaguo Yu. 2014. Recent Advances in Visible Light Bi-Based Photocatalysts. Cuihua Xuebao/Chinese Journal of Catalysis. Science Press. https://doi.org/10.1016/s1872-2067(14)60075-9.
  • 19. Herrmann, Jean-Marie. 1999. Heterogeneous Photocatalysis: Fundamentals and Applications to the Removal of Various Types of Aqueous Pollutants. Catalysis Today. Vol. 53.
  • 20. Hiruma, Yuji, Hajime Nagata, and Tadashi Takenaka. 2006. Phase Transition Temperatures and Piezoelectric Properties of (Bi1/2Na1/2)TiO3-(Bi1/2K1/2)TiO3-BaTiO3lead-Free Piezoelectric Ceramics. Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers 45 (9 B): 7409–12. https://doi.org/10.1143/JJAP.45.7409.
  • 21. Huo, Yuning, Zongli Xie, Xingdong Wang, Hexing Li, Manh Hoang, and Rachel A. Caruso. 2013. Methyl Orange Removal by Combined Visible-Light Photocatalysis and Membrane Distillation. Dyes and Pigments 98 (1): 106–12. https://doi.org/10.1016/j.dyepig.2013.02.009.
  • 22. Jiang, Xiang Ping, Mei Lin, Na Tu, Chao Chen, and Yue Ming Li. 2010. Synthesis of K0.5Bi0.5TiO3 Nanowires and Ceramics by a Simple Hydrothermal Method. Materials Science and Engineering B: Solid-State Materials for Advanced Technology 175 (1): 90–93. https://doi.org/10.1016/j.mseb.2010.06.010.
  • 23. Jiang, Yue, Wen-Fan Chen, Hongyang Ma, Hangjuan Ren, Sean Lim, Xinxin Lu, Ghazaleh Bahmanrokh, et al. 2021. Effect of Bi/Ti Ratio on (Na0.5Bi0.5) TiO3/Bi4Ti3O12 Heterojunction Formation and Photocatalytic Performance. Journal of Environmental Chemical Engineering 9 (6): 106532. https://doi.org/10.1016/j.jece.2021.106532.
  • 24. Kreisel, J., A. M. Glazer, P. Bouvier, and G. Lucazeau. 2001. High-Pressure Raman Study of a Relax- or Ferroelectric: The Na0.5Bi0.5TiO3 Perovskite. Physical Review B - Condensed Matter and Materials Physics 63 (17): 1741061–610. https://doi.org/10.1103/physrevb.63.174106.
  • 25. Kurra, Sreenu, Perala Venkataswamy, Gundeboina Ravi, Chandhiri Sudhakar Reddy, Boggu Jaganmohan Reddy, and Muga Vithal. 2019. Enhancement of Photocatalytic Activity of Sodium Bismuth Titanate by Doping with Copper, Silver, and Tin Ions. Zeitschrift Fur Anorganische Und Allgemeine Chemie 645 (5): 529–36. https://doi.org/10.1002/zaac.201800337.
  • 26. Lahmar, A., K. Zhao, S. Habouti, M. Dietze, C. H. Solterbeck, and M. Es-Souni. 2011. Off-Stoichiometry Effects on BiFeO3 Thin Films. Solid State Ionics 202 (1): 1–5. https://doi.org/10.1016/J.SSI.2011.03.017.
  • 27. Lencka, Malgorzata M., Magdalena Oledzka, and Richard E. Riman. 2000. Hydrothermal Synthesis of Sodium and Potassium Bismuth Titanates. Chemistry of Materials 12 (5): 1323–30. https://doi.org/10.1021/cm9906654.
  • 28. Li, Hui Dong, Chu De Feng, and Wen Long Yao. 2004. Some Effects of Different Additives on Di- electric and Piezoelectric Properties of (Bi1/2Na1/2) TiO3–BaTiO3 Morphotropic-Phase-Boundary Composition. Materials Letters 58 (7–8): 1194–98.https://doi.org/10.1016/J.MATLET.2003.08.034.
  • 29. Mesrar, M. 2022. DIELECTRIC MEASUREMENTS AND IMPEDANCE SPECTROSCOPY OF Ba-MODIFIED (Na 0.5Bi0.5)TiO₃ PREPARED BY THE HYDROTHERMAL METHOD. Ceramics - Silikaty 66 (3): 0–0. https://doi.org/10.13168/cs.2022.0039.
  • 30. Mesrar, M., A. Elbasset, N. S. Echatoui, F. Abdi, and T. Lamcharfi. 2023. Microstructural and High-Temperature Dielectric, Piezoelectric and Complex Impedance Spectroscopic Properties of K0.5Bi0.5TiO3 Modified NBT-BT Lead-Free Ferroelectric Ceramics. Heliyon 9 (4): e14761. https://doi.org/10.1016/j.heliyon.2023.e14761.
  • 31. Mesrar, M., T. Lamcharfi, N-S. Echatoui, and F. Abdi. 2022a. (1-x)(Na0.5Bi0.5)TiO3-x(K0.5Bi0.5) TiO3 Ceramics near Morphotropic Phase Boundary: A Structural and Electrical Study. Materialia, March, 101404. https://doi.org/10.1016/J.MTLA.2022.101404.
  • 32. Mesrar, M., T. Lamcharfi, N. Echatoui, F. Abdi, and A. Harrach. 2018. Investigation of Morphotropic Phase Boundary by Rietveld Refinement and Raman Spectroscopy for (1-x)(Na0.5Bi0.5)TiO3-XBaTiO3 Ceramics. Asian Journal of Chemistry 30 (5): 1012–18. https://doi.org/10.14233/ajchem.2018.21116.
  • 33. Mesrar, M., T. Lamcharfi, N. Echatoui, F. Abdi, A. Harrach, and F.Z. Ahjyaje. 2019. Hydrothermal Synthesis, Microstructure and Electrical Properties of (1- x)(Na0.5Bi0.5)TiO3-XBaTiO3 Ceramics. Moroccan Journal of Quantitative and Qualitative Research 0 (1): 14–24.
  • 34. Mesrar, M., T. Lamcharfi, N. S. Echatoui, and F. Abdi. 2022b. (1-x)(Na0.5Bi0.5)TiO3-x(K0.5Bi0.5)TiO3 Ceramics near Morphotropic Phase Boundary: A Structural and Electrical Study. Materialia 22 (March). https://doi.org/10.1016/j.mtla.2022.101404.
  • 35. Mesrar, Mohammed, Abdelhalim Elbasset, and F Abdi. 2023. Effect of Synthesis Process on the Piezoelectric Properties of ( 1-x ) NBT-XBT : A Comparative Study between Solid State and hydrothermal. International Journal of Nanoelectronics and Materials Volume 16, No. 2, April 2023 [241-264]
  • 36. Mesrar, Mohammed, Abdelhalim Elbasset, Nor Said Echatoui, Farid Abdi, and Taj Dine Lamcharfi. 2022. Studies of Structural, Dielectric, and Impedance Spectroscopy of KBT-Modified Sodium Bismuth Titanate Lead-Free Ceramics. ACS Omega. https://doi.org/10.1021/acsomega.2c03139.
  • 37. Mesrar, Mohammed, Tajdine Lamcharfi, Nor-Said Echatoui, Farid Abdi, Fatima Zahra Ahjyaje, and Mustapha Haddad. 2019. Effect of Barium Doping on Electrical and Electromechanical Properties of (1-x)(Na0.5Bi0.5)TiO3-XBaTiO3. Mediterranean Journal of Chemistry. https://doi.org/10.13171/10.13171/mjc8319050908mm.
  • 38. Moon, Kyoung Seok, Dibyaranjan Rout, Ho Yong Lee, and Suk Joong L. Kang. 2011. Solid State Growth of Na1/2Bi1/2TiO 3BaTiO3 Single Crystals and Their Enhanced Piezoelectric Properties. Journal of Crystal Growth 317 (1): 28–31. https://doi.org/10.1016/j.jcrysgro.2011.01.023.
  • 39. Mrabet, I. El, M. Kachabi, M. Nawdali, A. Harrach, F. Khalil, M. Ijjaali, M. Benzina, and H. Zaitan. 2018. Treatment of Landfill Leachate from Fez City (Morocco) Using Fenton and Photo-Fenton Processes. IOP Conference Series: Earth and Environmental Science 161 (1): 012025. https://doi.org/10.1088/1755-1315/161/1/012025.
  • 40. Neusel, Claudia, and Gerold A. Schneider. 2014. Size-Dependence of the Dielectric Breakdown Strength from Nano- to Millimeter Scale. Journal of the Mechanics and Physics of Solids 63 (1): 201–13. https://doi.org/10.1016/j.jmps.2013.09.009.
  • 41. Paola, Agatino Di, Elisa García-López, Giuseppe Marcì, and Leonardo Palmisano. 2012. A Survey of Photocatalytic Materials for Environmental Remediation. Journal of Hazardous Materials. Elsevier. https://doi.org/10.1016/j.jhazmat.2011.11.050.
  • 42. Pookmanee, Pusit, Gobwute Rujijanagul, Supon Ananta, Robert B. Heimann, and Sukon Phanichphant. 2004. Effect of Sintering Temperature on Microstructure of Hydrothermally Prepared Bismuth Sodium Titanate Ceramics. Journal of the European Ceramic Society 24 (2): 517–20. https://doi.org/10.1016/S0955-2219(03)00197-3.
  • 43. Quittet, A. M., M. I. Bell, M. Krauzman, and P. M. Raccah. 1976. Anomalous Scattering and Asymmetrical Line Shapes in Raman Spectra of Orthorhombic KNbO3. Physical Review B 14 (11): 5068–72. https://doi.org/10.1103/PhysRevB.14.5068.
  • 44. Rietveld, H. M. 1967. Line Profiles of Neutron Powder-Diffraction Peaks for Structure Refinement. Acta Crystallographica 22 (1): 151–52. https://doi.org/10.1107/s0365110x67000234.
  • 45. Roukos, Roy, Sara Abou Dargham, Jimmy Romanos, Fatima Barakat, and Denis Chaumont. 2019. Complex Structural Contribution of the Morphotropic Phase Boundary in Na0.5Bi0.5TiO3 - CaTiO3 System. Ceramics International 45 (4): 4467–73. https://doi.org/10.1016/j.ceramint.2018.11.126.
  • 46. Shannon, Mark A., Paul W. Bohn, Menachem Elimelech, John G. Georgiadis, Benito J. Marĩas, and Anne M. Mayes. 2008. Science and Technology for Water Purification in the Coming Decades. Nature 452 (7185): 301–10.
  • 47. Shih, Duke P.C., Ainara Aguadero, and Stephen J. Skinner. 2018. Improvement of Ionic Conductivity in A-Site Lithium Doped Sodium Bismuth Titanate. Solid State Ionics 317 (April): 32–38. https://doi.org/10.1016/J.SSI.2018.01.003.
  • 48. Sidi, Mohammed Mesrar, Mohamed Ben, F Abdi Sidi, Mohmmed Mesrar, Tajdine Lamcharfi, Nor- Said Echatoui, Farid Abdi, and Ahmed Harrach. 2019. High Dielectric Constant of (1-x)(Na0.5Bi0.5) TiO3-XBaTiO3 Prepared by the Hydrothermal Method. Article in Mediterranean Journal of Chem- istry. 2019.
  • 49. Suchanicz, J., and J. Kwapuliski. 1995. X-Ray Diffraction Study of the Phase Transitions in Na0.5Bi0.5TiO3. Ferroelectrics 165 (1): 249–53. https://doi.org/10.1080/00150199508228304.
  • 50. Suchanicz, Jan, Irena Jankowska-Sumara, and Tatiana V. Kruzina. 2011. Raman and Infrared Spectroscopy of Na0.5Bi0.5TiO 3 - BaTiO3 Ceramics. Journal of Electroceramics 27 (2): 45–50. https://doi.org/10.1007/s10832-011-9648-5.
  • 51. Sui, H. T., D. M. Yang, H. Jiang, Y. L. Ding, and C. H. Yang. 2013. Preparation and Electrical Proper- ties of Sm-Doped Bi 2 Ti 2 O 7 Thin Films Prepared on Pt (111) Substrates. Ceramics International 39 (2): 1125–28. https://doi.org/10.1016/j.ceramint.2012.07.035.
  • 52. Sundarakannan, B., K. Kakimoto, and H. Ohsato. 2003. Frequency and Temperature Dependent Dielectric and Conductivity Behavior of KNbO3 Ceramics. Journal of Applied Physics 94 (8): 5182–87.\https://doi.org/10.1063/1.1610260.
  • 53. Swain, Sridevi, Subrat Kumar Kar, and Pawan Kumar. 2015. Dielectric, Optical, Piezoelectric and Ferroelectric Studies of NBT–BT Ceramics near MPB. Ceramics International 41 (9): 10710–17. https://doi.org/10.1016/j.ceramint.2015.05.005.
  • 54. Tang, Junwang, Zhigang Zou, and Jinhua Ye. 2005. the Photocatalytic Activity of MIn 2 O 4 (M = Ca, Sr, Ba) under Visible Light Irradiation. Res. Chem. Intermed 31 (6): 513–19.
  • 55. Tanji, Karim, J. A. Navio, Jamal Naja, M. C. Hidalgo, Abdellah Chaqroune, C. Jaramillo-Páez, and Abdelhak Kherbeche. 2019. Extraordinary Visible Photocatalytic Activity of a Co0.2Zn0.8O System Studied in the Remazol BB Oxidation. Journal of Photochemistry and Photobiology A: Chemistry 382 (May): 111877. https://doi.org/10.1016/j.jphotochem.2019.111877.
  • 56. Tanji, Karim, Morad Zouheir, Yassine Naciri, Hassan Ahmoum, Abdelghani Hsini, and Oumaima Mertah. 2022. Visible Light Photodegradation of Blue Basic 41 Using Cobalt Doped ZnO : Box- Behnken Optimization and DFT Calculation. Journal of the Iranian Chemical Society 19: 2779–2794. https://doi.org/10.1007/s13738-022-02496-w.
  • 57. Trelcat, Jean François, Sophie d’Astorg, Christian Courtois, Philippe Champagne, Mohamed Rguiti, and Anne Leriche. 2011. Influence of Hydrothermal Synthesis Conditions on BNT-Based Piezoceramics. Journal of the European Ceramic Society 11 (31): 1997–2004. https://doi.org/10.1016/J.JEURCERAMSOC.2011.04.025.
  • 58. Xiao, Qi, Jiang Zhang, Chong Xiao, and Xiaoke Tan. 2007. Photocatalytic Decolorization of Methylene Blue over Zn1-XCoxO under Visible Light Irradiation. Materials Science and Engineering B: Solid-State Materials for Advanced Technology 142 (2–3): 121–25. https://doi.org/10.1016/j.mseb.2007.06.021.
  • 59. Yang, Zetian, Feng Gao, Hongliang Du, Li Jin, Leilei Yan, Qingyuan Hu, Ying Yu, et al. 2019. Grain Size Engineered Lead-Free Ceramics with Both Large Energy Storage Density and Ultrahigh Mechanical Properties. Nano Energy 58 (April): 768–77. https://doi.org/10.1016/j.nanoen.2019.02.003.
  • 60. Yang, Zhengwen, Ji Zhou, Xueguang Huang, Qin Xie, Ming Fu, Bo Li, and Longtu Li. 2009. Preparation and Photonic Bandgap Properties of Na1/2Bi1/2TiO3 Inverse Opal Photonic Crystals. Journal of Alloys and Compounds 471 (1–2): 241–43. https://doi.org/10.1016/j.jallcom.2008.03.068.
  • 61. Zeroual, S., H. Lidjici, W. Chatta, and H. Khemakhem. 2019. Dielectric and Raman Spectros- copy Studies of (Na0.5Bi0.5)TiO3 Lead-Free Ceramic. Ceramica 65 (374): 222–26. https://doi.org/10.1590/0366-69132019653742627.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2dd9da13-00e0-4d74-918a-658d08b90eb9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.