PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Adaptive slip&slide control system design in railway applications

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Adhesion coefficient and the resultant normal force occurred at the wheel-rail contact determine braking and traction forces in railway applications. Due to the limits on controlling the resultant normal force, maximization of the adhesion coefficient is the only way to obtain larger braking and tractive works. There are various advantages of utilization of adhesion in an efficient way, such as reducing operating costs, minimizing trip time, preventing wheel-rail wear. On the other hand, the adhesion mechanism at the wheel-rail contact has a highly non-linear complex nature, whose dynamics are changed as a function of parameters like environmental conditions, vehicle speed, slip ratio etc. There is not any satisfactory accurate and trustworthy way of estimating these parameters yet. In this paper, an event based adaptive control scheme has been introduced to maximize the adhesion coefficient without requiring the exact value of those parameters. The efficient adhesion utilization can be obtained by using the proposed method while maintaining the stability. The continuous excitement of traction system and slow recuperation detection time difficulties in the former research has been overcome. The dynamics of phase shift were analyzed and an adaptive structure were built. Results acquired by using the proposed adaptive method were compared with the conventional control scheme in “Matlab&Simulink” software under various driving scenarios and wheel-rail contact conditions.
Twórcy
  • Istanbul Technical University, Graduate School of Science, Engineering and Technology, Department of Mechatronics Engineering, Istanbul, Turkey
Bibliografia
  • 1. Blanc-Talon, J., Distante, C., Philips, W., Popescu, D., & Scheunders, P. (2016). Advanced Concepts for Intelligent Vision Systems 17th International Conference, ACIVS 2016, Lecce, Italy, October 24–27, 2016, Proceedings. Cham: Springer International Publishing.
  • 2. Mei, T. X., & Li, H. (2008). Measurement of vehicle ground speed using bogie-based inertial sensors. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 222(2), 107–116. doi:10.1243/09544097jrrt154
  • 3. Allotta, B., Colla V, Malvezzi, M.: “Train position and speed estimation using wheel velocity mea-surements”, (2002) Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 216 (3), pp. 207–225.
  • 4. [Song, C. K., Uchanski, M., & Hedrick, J. K. (2002). Vehicle Speed Estimation Using Accelerometer and Wheel Speed Measurements. SAE Technical Paper Series. doi:10.4271/2002–01–2229
  • 5. Watanabe, T., & Yamashita, M. (2003). Anti-slip Readhesion Control without Speed Sensor for Electric Railway Vehicles. IEEJ Transactions on Industry Applications, 123(5), 483–491. doi:10.1541/ ieejias.123.483
  • 6. Yasuoka, I., Mochizuki, Y., Toda, S., Nakazawa, Y., Hongguang, G., & Huiyan, L. (2009). Consid-eration of wheel slip and readhesion control for induction traction motor electric locomotives with individual traction control. Electrical Engineering in Japan, 169(3), 56–64. doi:10.1002/eej.20883
  • 7. Mei, T. X., Yu, J. H., & Wilson, D. A. (2008). A Mechatronic Approach for Anti-slip Control in Railway Traction. IFAC Proceedings Volumes, 41(2), 8275–8280. doi:10.3182/20080706–5-kr-1001.01399
  • 8. Yamashita, M., & Soeda, T. (2012). Development of a new traction control method to suppress wheel-slip of electric locomotives. 2012 Electrical Systems for Aircraft, Railway and Ship Propulsion. doi:10.1109/esars.2012.6387401
  • 9. Kabziński, J. (2015). Adaptive, compensating control of wheel slip in railway vehicles. Bulletin of the Polish Academy of Sciences Technical Sciences, 63(4). doi:10.1515/bpasts-2015–0108
  • 10. Kadowaki, S., Ohishi, K., Miyashita, I., & Yasukawa, S. (2006). Anti-Slip/Skid Re-Adhesion Control of Electric Motor Coach Based on Disturbance Observer and Sensor-Less Vector Control. EPE Journal, 16(2), 7–15. doi:10.1080/09398368.2006 .11463614
  • 11. Kadowaki, S., Ohishi, K., Hata, T., Iida, N., Takagi, M., Sano, T., & Yasukawa, S. (2007). Antislip Readhesion Control Based on Speed-Sensorless Vector Control and Disturbance Observer for Electric Commuter Train–Series 205–5000 of the East Japan Railway Company. IEEE Transactions on Industrial Electronics, 54(4), 2001–2008. doi:10.1109/tie.2007.895135
  • 12. Hong, X., Zhang, R., Wu, L., Li, Y., & Wang, K. (2013). Simulation of adhesion control method based on phase-shift. 2013 International Conference on Electrical Machines and Systems (ICEMS). doi:10.1109/icems.2013.6713173
  • 13. Yang, F., Sedaghati, R., & Esmailzadeh, E. (2008). A New LuGre Friction Model for MR-9000 Type MR Damper. Volume 11: Mechanical Systems and Control. doi:10.1115/imece2008–69005
  • 14. Polach, O. (2005). Creep forces in simulations of traction vehicles running on adhesion limit. Wear, 258(7–8), 992–1000. doi:10.1016/j. wear.2004.03.046
  • 15. Canudas-De-Wit, C., Tsiotras, P., Velenis, E., Basset, M., & Gissinger, G. (2003). Dynamic Friction Models for Road/Tire Longitudinal Interaction. Vehicle System Dynamics, 39(3), 189–226. doi:10.1076/vesd.39.3.189.14152
  • 16. Kalker, J. J. (1990). Results. Three-Dimensional Elastic Bodies in Rolling Contact Solid Mechanics and Its Applications, 185–236. doi:10.1007/978–94–015–7889–9_5
  • 17. Liu, J., Zhao, H., & Zhai, W. (2010). Mechanism of self-excited torsional vibration of locomotive driving system. Frontiers of Mechanical Engineering in China, 5(4), 465–469. doi:10.1007/ s11465–010–0115–9
  • 18. Steimel, A. (2014). Electric Traction – Motive Power and Energy Supply Basics and Practical Experience Inkl.: MediaCenter eBook. München: Deutscher Industrieverlag.
  • 19. Boon, C. J. (1980). Railway technology: a brief overview. Kingston, Ont.: Canadian Institute of Guided Ground Transport, Queen’s University.
  • 20. Flammini, F. (2012). Railway safety, reliability, and security: technologies and systems engineering. Hershey PA: Information Science Reference.
  • 21. Iwnicki, S. (2006). Handbook of railway vehicle dynamics. New York: CRC – Taylor & Francis.
  • 22. O. Heirich, A. Steingass, A. Lehner and T. Strang. (2013). Velocity and location information from onboard vibration measurements of rail vehicles. Information Fusion (FUSION), 16th International Conference on, Istanbul, 2013, pp. 1835–1840.
  • 23. Wu, L. (2011). Experimental study on vehicle speed estimation using accelerometer and wheel speed measurements. 2011 Second International Conference on Mechanic Automation and Control Engineering. doi:10.1109/mace.2011.5986916
  • 24. Crespillo, O. G., Heirich, O., & Lehner, A. (2014). Bayesian GNSS/IMU tight integration for precise railway navigation on track map. 2014 IEEE/ION Position, Location and Navigation Symposium – PLANS 2014. doi:10.1109/ plans.2014.6851465
  • 25. Yamashita, M., & Watanbe, T. (2003). A readhesion control method without speed sensor for electric railway vehicles. IEEE International Electric Machines and Drives Conference, 2003. IEMDC’03. doi:10.1109/iemdc.2003.1211278
  • 26. Ishrat, T., Ledwich, G., Vilathgamuwa, M., & Borghesani, P. (2016). Wheel slip control based on traction force estimaton of electric locomotives. 2016 Australasian Universities Power Engineering Conference (AUPEC). doi:10.1109/aupec.2016.7749331
  • 27. Armstrong-Hélouvry, B. (1991). Control of machines with friction. Boston: Kluwer Academic .
  • 28. Huang, Y., Cao, F., Ke, B. R., & Tang, T. (2016). Modelling and optimisation of train electric drive system based on fuzzy predictive control in urban rail transit. International Journal of Simulation and Process Modelling, 11(5), 363. doi:10.1504/ ijspm.2016.079198
  • 29. Conti, R., Meli, E., Ridolfi, A., & Rindi, A. (2014). An innovative hardware in the loop architecture for the analysis of railway braking under degraded adhesion conditions through roller-rigs. Mechatronics, 24(2), 139–150. doi:10.1016/j.mechatronics.2013.12.011
  • 30. Meli, E., & Ridolfi, A. (2013). An innovative wheel–rail contact model for railway vehicles under degraded adhesion conditions. Multibody System Dynamics, 33(3), 285–313. doi:10.1007/ s11044–013–9405–4
  • 31. Uyulan, C., Gokasan, M., & Bogosyan, S. (2017). Comparison of the re-adhesion control strategies in high-speed train. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 232(1), 92–105. doi:10.1177/0959651817737857
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2dd3f04b-e995-40e6-ba19-7cd44a69ec81
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.