PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Electrowinning Of Tellurium From Acidic Solutions

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Otrzymywanie telluru metodą elektrochemiczną z roztworów kwaśnych
Języki publikacji
EN
Abstrakty
EN
The process of electrochemical deposition of tellurium was studied. Preliminary researches embrace the voltammetry and microgravimetric measurements. According to the results the electrolysis of tellurium was conducted under potentiostatic conditions. There was no deposition of tellurium above potential −0.1 vs. Ag/AgCl electrode in 25°C. The process of deposition is observed in the range of potentials −0.1 to −0.3 V vs. Ag/AgCl. The presence of tellurium was confirmed by XRF and XRD. The obtained deposits were homogenous and compact. Below potential −0.3 V vs. Ag/AgCl the Faradaic efficiency of the tellurium deposition decreased due to reduction of Te to H2Te and hydrogen evolution.
PL
Przeprowadzono badania obejmujące możliwość otrzymywania telluru z roztworów kwaśnych metodą elektrochemiczną. Badania wstępne obejmowały analizę mechanizmu osadzania telluru z wykorzystaniem cyklicznej woltamperometrii oraz elektrochemicznej mikrowagi kwarcowej. Na podstawie otrzymanych wyników przeprowadzono proces elektrolizy w warunkach potencjostatycznych. W temperaturze 25°C powyżej potencjału −0.1 V względem elektrody chlorosrebrowej nie zachodzi proces osadzania telluru. W zakresie potencjałów od −0.1 do −0.3 V względem elektrody chlorosrebrowej następuje jego osadzanie na katodzie. Obecność tellury była potwierdzona metodami XRD i XRF. Osady otrzymane w omawianym zakresie parametrów charakteryzowały się zwartą i jednorodną budową. Poniżej potencjału −0.3 V względem elektrody chlorosrebrowej wydajność oraz szybkość procesu osadzania telluru ulegają obniżeniu w wyniku występowania reakcji konkurencyjnych: redukcji Te do H2Te oraz wydzielania wodoru.
Twórcy
autor
  • AGH University of Science and Technology, Faculty of Non-Ferrous Metals, Department of Physical Chemistry and Metallurgy of Non-Ferrous Metals, al. A. Mickiewicza 30, 30-059 Kraków, Poland
autor
  • AGH University of Science and Technology, Faculty of Non-Ferrous Metals, Department of Physical Chemistry and Metallurgy of Non-Ferrous Metals, al. A. Mickiewicza 30, 30-059 Kraków, Poland
autor
  • AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, al. A. Mickiewicza 30, 30-059 Kraków, Poland
autor
  • AGH University of Science and Technology, Faculty of Non-Ferrous Metals, Department of Material Science and Non–Ferrous Metals Engineering, al. A. Mickiewicza 30, 30-059 Kraków, Poland
  • AGH University of Science and Technology, Faculty of Non-Ferrous Metals, Department of Physical Chemistry and Metallurgy of Non-Ferrous Metals, al. A. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
  • [1] G. Kavlak, T.E. Graedel, Global anthropogenic tellurium cycles for 1940-2010, Resources, Conservation and Recycling 76, 21-6 (2013).
  • [2] J.E. Hoffmann, Recovering selenium and tellurium from copper refinery slimes, Jom 41, 33-7 (1989).
  • [3] F. Habashi, Handbook of extractive metallurgy, Wiley-VCH, Weinheim; New York, 1997.
  • [4] W.G. Woll, R.T. Gore, Production of tellurium, Production of tellurium, US Patent 2, 258, 963 (1941).
  • [5] K. Mech, P. Zabinski, R. Kowalik, K. Fitzner, EQCM, SEC and voltammetric study of kinetics and mechanism of hexaamminecobalt(III) electro-reduction onto gold electrode, Electrochimica Acta 81, 254-9 (2012).
  • [6] K. Mech, P. Zabinski, R. Kowalik, K. Fitzner, Voltammetric study of electro-reduction of tetraamminepalladium(II) onto gold electrode, Journal of Electroanalytical Chemistry 685, 15-20 (2012).
  • [7] K. Mech, P. Zabinski, R. Kowalik, K. Fitzner, Kinetics and mechanism of [PdClx(H2O) 4-x]2-x(x = 3,4) complexes electro-reduction, Journal of The Electrochemical Society 160, H770-H4 (2013).
  • [8] K. Mech, P. Zabinski, R. Kowalik, Co-reduction of electrochemically active [Co(H2O) 6]2+ and [CoCl(H2O)5]+ complexes onto gold electrode, Journal of The Electrochemical Society 160, D246-D50 (2013).
  • [9] K. Mech, P. Zabinski, R. Kowalik, Analysis of rhodium electrodeposition from chloride solutions, Journal of The Electrochemical Society 161, D458-D61 (2014).
  • [10] P.R. Zabinski, R. Kowalik, M. Piwowarczyk, Cobalt-tungsten alloys for hydrogen evolution in hot 8 M NaOH, Archives of Metallurgy and Materials 52, 627-34 (2007).
  • [11] T. Dobrovolska, R. Kowalik, P. Zabinski, I. Krastev, Investigations of the surface morphology of electrodeposited Ag-In coatings by means of optical, scanning-electron and atomic-force microscopy, Bulgarian Chemical Communications 40, 254-60 (2008).
  • [12] I. Krastev, T. Dobrovolska, R. Kowalik, P. Zabinski, A. Zielonka, Properties of silver-indium alloys electrodeposited from cyanide electrolytes, Electrochimica Acta 54, 2515-21 (2009).
  • [13] P. Zabinski, M. Górski, R. Kowalik, Influence of superimposed external magnetic fHiLD onto electrodeposition of co-P alloys for hydrogen evolution, Archives of Metallurgy and Materials 54, 1157-66 (2009).
  • [14] P.R. Zabinski, A. Jarek, R. Kowalik, Effect of applied external magnetic field on electrodeposition of cobalt alloys for hydrogen evolution in 8M NaOH, Magnetohydrodynamics 275-80 (2009).
  • [15] P. Zabinski, K. Mech, R. Kowalik, Co-Mo and Co-Mo-C alloys deposited in a magnetic field of high intensity and their electrocatalytic properties, Archives of Metallurgy and Materials 57, 127-33 (2012).
  • [16] P.R. Zabinski, A. Franczak, R. Kowalik, Electrocatalytically active Ni-Re binary alloys electrodeposited with superimposed magnetic field, Archives of Metallurgy and Materials 57, 495-501 (2012).
  • [17] P.R. Zabinski, A. Franczak, R. Kowalik, Electrodeposition of functional Ni-Re alloys for hydrogen evolution, Ecs Transactions, 33 ed., 39-48 (2012).
  • [18] K. Mech, G. Boczkal, P. Pałka, P. Zabinski, R. Kowalik, Synthesis of Co-Pd alloys by co-electroreduction of aquachloro-cobalt(II) and palladium(II) complexes, J Solid State Electr 1-7 (2013).
  • [19] K. Mech, P. Zabinski, R. Kowalik, K. Fitzner, Analysis of Co-Pd alloys deposition from electrolytes based on [Co(NH3)6]3+ and [Pd(NH3) 4]2+ complexes, Electrochimica Acta 104, 468-73 (2013).
  • [20] K. Mech, P. Zabinski, M. Mucha, R. Kowalik, Electrodeposition of catalytically active Ni-Mo alloys, Archives of Metallurgy and Materials 58, 227-9 (2013).
  • [21] P. Zabinski, K. Mech, R. Kowalik, Electrocatalytically active Co-W and Co-W-C alloys electrodeposited in a magnetic field, Electrochimica Acta 104, 542-8 (2013).
  • [22] H. Kazimierczak, P. Ozga, A. Jałowiec, R. Kowalik, Tin-zinc alloy electrodeposition from aqueous citrate baths, Surface and Coatings Technology 240, 311-9 (2014).
  • [23] K. Mech, P. Zabinski, R. Kowalik, M. Wojnicki, Electrodeposition of Co-Rh alloys from aqueous acidic chloride electrolytes, Surface and Coatings Technology (2014).
  • [24] P. Zabinski, A. Sokol, K. Mech, T. Tokarski, R. Kowalik, Magnetic field effect on properties of galvanostatically deposited Co-Pd alloys, Magnetohydrodynamics 50, 75-81 (2014).
  • [25] T.S. Dobrovolska, I. Krastev, P. Zabinski, R. Kowalik, A. Zielonka, Oscillations and self-organization phenomena during electrodeposition of silver-indium alloys. Experimental study, Archives of Metallurgy and Materials 56, 645-57 (2011).
  • [26] K. Mech, P. Zabinski, R. Kowalik, T. Tokarski, K. Fitzner, Electrodeposition of Co-Pd alloys from ammonia solutions and their catalytic activity for hydrogen evolution reaction, J Appl Electrochem 44, 97-103 (2014).
  • [27] R. Kowalik, K. Fitzner, About the conditions of zinc selenide electrodeposition from aqueous solutions, Metall. Foundry Eng. 30 (2004).
  • [28] R. Kowalik, P. Zabinski, K. Fitzner, Electrodeposition of ZnSe, Electrochimica Acta 53, 6184-90 (2008).
  • [29] R. Kowalik, K. Fitzner, Analysis of the mechanism for electrodeposition of the ZnSe phase on Cu substrate, Journal of Electroanalytical Chemistry 633, 78-84 (2009).
  • [30] J. Mech, R. Kowalik, A. Podborska, P. Kwolek, K. Szaciowski, Arithmetic device based on multiple schottky-like junctions, Australian Journal of Chemistry 63, 1330-3 (2010).
  • [31] K. Mech, R. Kowalik, K. Fitzner, Electrochemical synthesis of tetragonal SnO2 phase, Archives of Metallurgy and Materials 56, 659-63 (2011).
  • [32] S. Gawęda, R. Kowalik, P. Kwolek, W. Macyk, J. Mech, M. Oszajca, A. Podborska, K. Szaciłowski, Nanoscale digital devices based on the photoelectrochemical photocurrent switching effect: Preparation, properties and applications, Israel Journal of Chemistry 51, 36-55 (2011).
  • [33] M. Duda, R. Kowalik, K. Mech, P. Zabinski, Electrochemical deposition of CdS thin films from acid solutions, Rudy i Metale Nieżelazne 57, 586-91 (2012).
  • [34] R. Kowalik, K. Szaciłowski, P. Zabinski, Photoelectrochemical study of ZnSe electrodeposition on Cu electrode, Journal of Electroanalytical Chemistry 674, 108-12 (2012).
  • [35] S. Gawęda, R. Kowalik, P. Kwolek, W. Macyk, J. Mech, M. Oszajca, A. Podborska, K. Szaciłowski, Hybrid Semiconducting Materials: New Perspectives for Molecular-Scale Information Processing, Molecular and Supramolecular Information Processing: From Molecular Switches to Logic Systems, 121-73 (2013).
  • [36] R. Kowalik, P. Zabinski, K. Mech, Electrochemical studies of Cd UPD on polycrystalline silver, Electrochemistry Communications 31, 49-51 (2013).
  • [37] R. Kowalik, Microgravimetric studies of selenium electrodeposition onto different substrates, Archives of Metallurgy and Materials 59, 871-7 (2014).
  • [38] M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions, Pergamon, New York, 1966.
  • [39] A.J. Bard, Encyclopedia of electrochemistry of the elements, Marcell Dekker, New York, 1975.
  • [40] M. Bouroushian, Electrochemistry of metal chalcogenides, Monographs in electrochemistry, Springer, Berlin, London, 2010, pp. xii, 358 p.
  • [41] T.A. Sorenson, T.E. Lister, B.M. Huang, J.L. Stickney, Comparison of atomic layers formed by electrodeposition of selenium and tellurium. Scanning tunneling microscopy studies on Au(100) and Au(111), Journal of The Electrochemical Society 146, 1019-27 (1999).
  • [42] T.A. Sorenson, K. Varazo, D.W. Suggs, J.L. Stickney, Formation of and phase transitions in electrodeposited tellurium atomic layers on Au(1 1 1), Surf Sci 470, 197-214 (2001).
  • [43] M.C. Santos, M.F. Cabral, S.A.S. MacHado, Tellurium under-potential deposited ad-atoms on Au electrodes: A new electrodeposition mechanism using an electrochemical quartz crystal nanobalance, Electrochimica Acta 58, 1-5 (2011).
  • [44] G. Sauerbrey, Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung, Z. Physik 155, 206-22 (1959).
Uwagi
EN
This work was supported by the Polish National Center of Science under grant 2011/01/D/ST5/05743.
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2dd31fc3-db20-4403-b93a-ce184c1385eb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.