PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical study of wave transmission over double submerged breakwaters using non-hydrostatic wave model

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the present work, a non-hydrostatic wave model SWASH (an acronym of Simulating WAves till SHore) is used to simulate the wave transmission over double trapezoidal submerged breakwaters. The numerical results were compared with the results of the physical model. The comparison indicated the capability of SWASH model to predict the wave transmission over double submerged breakwaters. Influencing factors such as breakwater spacing S/L0, where L0 is the deep-water wavelength, and current were investigated in detail. Moreover, the effects of current on wave transmission were also analyzed. When the relative submerged depth R/H, where R is the submerged depth and H is the wave height, remains at 1.0, the appropriate relative breakwater spacing S/L0 is about 1.11. Current has no obvious effect on the appropriate S/L0, but it will change the shape of wave spectrum. Dissipation of super harmonic wave components is more obvious than that of lower harmonic wave components.
Czasopismo
Rocznik
Strony
308--317
Opis fizyczny
Bibliogr. 22 poz., rys., tab., wykr.
Twórcy
autor
  • College of Engineering, Ocean University of China, Qingdao, China
  • Shandong Province Key Laboratory of Ocean Engineering, Ocean University of China, Qingdao, China
autor
  • College of Engineering, Ocean University of China, Qingdao, China
autor
  • College of Engineering, Ocean University of China, Qingdao, China
autor
  • College of Engineering, Ocean University of China, Qingdao, China
autor
  • College of Engineering, Ocean University of China, Qingdao, China
Bibliografia
  • Andersen, T.L., Burcharth, H.F., 2009. Three-dimensional investigations of wave overtopping on rubble mound structures. Coastal Eng. 56 (2), 180—189.
  • Beji, S., Battjes, J.A., 1993. Experimental investigation of wave propagation over a bar. Coastal Eng. 19 (1), 151—162.
  • Briganti, R., Van der Meer, J.W., Buccino, M., Calabrese, M., 2003. Wave transmission behind low crested structures. In: Proc. 3rd Coastal Structures Conference. 580—592.
  • Cao, Y., Jiang, C., Bai, Y., 2012. Wave attenuation properties of double trapezoidal submerged breakwaters on flat-bed. Trans. Tianjin Univ. 18, 401—410.
  • Carevic, D., Loncar, G., Prsic, M., 2012. Transformation of statistical and spectral wave periods crossing a smooth low-crested structure. Oceanologia 54 (1), 39—58.
  • Carevic, D., Loncar, G., Prsic, M., 2013. Wave parameters after smooth submerged breakwater. Coastal Eng. 79, 32—41.
  • Goda, Y., Suzuki, Y., 1976. Estimation of incident and reflected wave in random wave experiments. In: Proceedings of 15th Conference on Coastal Engineering, Honolulu, Hawaii, USA, 828—845.
  • He, Z., Liu, P., You, Y., Feng, B., 2007. Reflection and transmission properties of double submerged rectangular blocks. Acta Oceanol. Sin. 26 (2), 115—122.
  • Jeon, C.-H., Cho, Y.-S., 2006. Bragg reflection of sinusoidal waves due to trapezoidal submerged breakwaters. Ocean Eng. 33, 2067—2082.
  • Koraim, A.S., Heikal, E.M., Abo Zaid, A.A., 2014. Hydrodynamic characteristics of porous seawall protected by submerged breakwater. Appl. Ocean Res. 46, 114.
  • Ohyama, T., Nadaoka, K., 1992. Modeling the transformation of nonlinear waves passing over a submerged dike. Proc. Coastal Eng. 1 (23), 526—539.
  • Rijnsdorp, D.P., Smit, P.B., Zijlema, M., 2014. Non-hydrostatic modelling of infragravity waves under laboratory conditions. Coastal Eng. 85, 30—42.
  • Sollitt, C.K., Cross, R.H., 1972. Wave transmission through permeable breakwaters. Coastal Eng. Proc. 1 (13), 1827—1846.
  • Suzuki, T., Verwaest, T., Hassan, W., Veale, W., Reyns, J., Trouw, K., Zijlema, M., 2011. The applicability of SWASH model for wave transformation and wave overtopping: a case study for the Flemish coast. In: Proc. 5th Int. Conf. Advanced Computational Methods Engineering (ACOMEN 2011), Liège, Belgium, 14—17.
  • Twu, S.-W., Liu, C.-C., 2004. Interaction of non-breaking regular waves with a periodic array of artificial porous bars. Coastal Eng. 51, 223—236.
  • Van der Meer, J.W., Briganti, R., Zanuttigh, B., Wang, B., 2005. Wave transmission and reflection at low crested structures: design formulae, oblique wave attack and spectral change. Coastal Eng. 52 (10—11), 915—929.
  • Van der Meer, J.W., Regeling, H.J., de Waal, J.P., 2000. Wave transmission: spectral changes and its effects on run up and overtopping. In: Proc. 27th Int. Conf. Coast. Eng. ASCE. 2156— 2168.
  • Van der Meer, J.W., Wang, B., Wolters, A., Zanuttigh, B., Kramer, M., 2003. Oblique wave transmission over low-crested structures. In: ASCE, Proc. Coastal Structures. 567—579.
  • Wang, B., Otta, A.K., Chadwick, A.J., 2007. Transmission of obliquely incident waves at low-crested breakwaters: theoretical interpretations of experimental observations. Coastal Eng. 54 (4), 333—344.
  • Zijlema, M., Stelling, G.S., 2005. Further experiences with computing non-hydrostatic free-surface flows involving water waves. Int. J. Numer. Method Fluids 48 (2), 169—197.
  • Zijlema, M., Stelling, G., Smit, P., 2011. SWASH: an operational public domain code for simulating wave fields and rapidly varied flows in coastal waters. Coastal Eng. 58 (10), 992—1012.
  • Zou, Q., Peng, Z., 2011. Evolution of wave shape over a low-crested structure. Coastal Eng. 58 (6), 478—488.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2dc1301e-11c9-4458-bfe8-7c3abe8c72bd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.