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Abstract. Clusters and distributed systems allow for 

error tolerance and high performance through shared use 

of the load. When all computers work, we would like to 

distribute the load equally among computers. When one or 

more computers are broken, the load on these computers 

should be redistributed to other computers in the cluster. 

Redistribution determines the recovery scheme. The 

recovery plan should keep the load as optimal as when 

even the most unfavorable combinations of computers are 

turned off, that is, we want to optimize the behavior of the 

worst case. In this work, we find new regeneration 

schemes based on so-called IRB and ideal ring loops and 

synthesize the corresponding combinatorial structures. 

They are optimal for many cases of recovery schemes. 

Keywords: сluster, distributed system, Golomb ruler, 

ideal ring bundle, recovery scheme. 

INTRODUCTION 

Application of recovery schemes in distributed 

computing for information systems is due to the 

complexity of such modern systems and the need to 

prevent errors in working in a distributed network when 

parts of computers are abandoned [4, 12]. 

Load balancing and suitability are important in 

distributing online trusted systems. Krishna and Shin 

define tolerance for error as "the ability of the system to 

respond immediately to an unexpected error of the 

technical support or program" [13]. Many compromise-

tolerant systems reflect all actions, for example, each 

action is executed on two or more dual systems in such a 

way that, if one does, the other can accept it. The 

advantage of using clusters, apart from tolerance to error, 

is the load that is shared between computers [3, 14]. 

One can manage this task dynamically, where 

transfer decisions do not depend on the actual state of the 

system. The task with dynamic politics is rather 

unpredictable.Otherwise - you should use a static policy, 

which is generally based on the information behavior of 

the system. Here, the transfer solution is independent of 

the actual current state of the system. This makes them less 

complex and more predictable than dynamic policies [2, 

4]. 

The task, studied in this work, is: how to evenly 

distribute the current computers when one or more 

computers in the cluster are turned off and how to build 

these mathematical models most importantly? Let's 

consider it a static redistribution of work. 

FORMULATION OF THE PROBLEM 

There is a main computer that executes the 

application under normal conditions and a secondary 

computer that accepts the task when the host computer is 

turned off. Perhaps there is also a third computer that takes 

a task when the main and secondary computers are off, and 

so on. When all computers are working, we take steps to 

spread the load evenly [3]. The load on some computers 

will, however, grow when one or more computers are shut 

down, but under these conditions we would like to 

distribute the load as evenly as possible on the remaining 

computers. 

The distribution of the load when the computer is off 

is resolved by a list of recovery processes that are 

performed on an erroneous computer. The set of all 

recovery lists is called recovery. Consequently, the 

distribution of the load is completely determined by the 

recovery scheme regardless of the number of computers 

that are turned off [5, 12]. 

The problem of identifying optimal (or even better) 

recovery schemes is studied in [4, 6]. We will find 

recovery schemes that guarantee the load balances for 

more computers in the cluster. This work looks at, 

including the worst case scenario, when a computer that is 

already redistributing another process from a pre-broken 

computer has failed. 

SOLVING THE PROBLEM KEY 

We assume that the work performed by each of the N 

computers must be moved as one atomic unit. This is a 

very common scenario, which includes cases where: 

• The work performed by the computer is done from 

one external system (stacked recovery schemes work in 

external systems, such as the second, third, fourth, etc., 

alternative locations (alternative cluster nodes) 

mailto:riznykoleg@gmail.com


34      O. RIZNYK, R. VYNNYCHUK 
 

destination, if the main, secondary, etc. the destination 

computer is disabled); 

• There is one network address for each computer and 

we use the IP protocol (or similar technique); 

• All work done by the computer, does one process or 

group of related processes using shared internal resources 

and therefore must be moved as one unit. 

In [14], a case is considered when a number of 

independent processes are performed by each computer. 

These results can be easily generalized to the case with the 

number of independent processes on each computer using 

the same technique. 

Consider a cluster with n identical nodes, which 

under normal conditions perform one process each. All 

processes perform the same amount of work. We see a 

schema recovery for the cluster that determines where the 

process should start again if its current node is off. The 

recovery scheme should keep the load balanced to the 

cluster when even the most unfavorable combination of 

nodes is off. The recovery scheme must be calculated for 

a large n in real time. 

The recovery scheme R  consists of n  restores 

lists - one list per process. Let R  be a sequence of 

distances, that is, a sequence of positive integers 

1 2 1,  ,  ...,  nS s s s    where  
1

1, , 1
i

j

j

i ns


    - the 

distance between the damaged node and the node at which 

process must be restarted in the i -th step. Let 0R  be a 

process restore 0 (which runs on a computer 0). The list of 

restorations from which we construct the sequence S : 

0 1 1 2 1 2 3 1 10,  ,  ,   ,  ...,  ... nR s s s s s s s s         (1). 

When one node in the cluster breaks down, the load 

on the most loaded node in the cluster (we call that node 

Z ) will contain two jobs: in fact, it's work from the node. 

When two nodes in the cluster are turned off, there are two 

possibilities. If both are initially in sequence, the load on 
Z  can contain three jobs: its own, from one node and from 

another node [3, 5]. This situation is presented in Fig. 1a. 

Nodes and - damaged nodes. The second option is - when 

the first two numbers in the sequence are different. In this 

case, Z  can contain only two works: its own and from one 

node or from another node. This situation is presented in 

Fig. 1b. Therefore, the load in the worst case on Z  is less 

than when 1 2s s . Fig. 1b also shows the situation when 

three nodes in the cluster are turned off. 

Then the load on Z  can contain three jobs: its own 

and from nodes. Note that in this case the node is also a 

damaged node. The worst case for the three damaged 

nodes is when the first of the three numbers in the 

sequence is equal, that is, 1 2 3s s s  . In this case, Z  will 

contain four works: its own and from the knots. 

In [6], authors consider the task of detecting a 

recovery scheme that can guarantee optimal load 

distribution in the worst case when most k  computers are 

turned off. Schemes should have as much as possible a k

. Authors present and prove it in the Log algorithm, it does 

a recovery scheme that guarantees optimality, where the 

largest number of 2log n  computers is disabled. The 

optimal means when the maximum number of processes 

on the same computer after k  offsets is ( )MV k , where 

( )MV k  provides the lower limit for any static recovery 

scheme [4, 6]. 

 

Fig. 1. The script with three broken knots. 

Another algorithm, called saving, is presented in 

[10]. This algorithm generates recovery schemes that give 

optimality to a greater number of cases than the Log 

algorithm (that is, saving provides optimal guarantees 

when more than 2 logins are off.) The saving algorithm is 

based on the mathematical problem of identifying a 

sequence of positive integers such that the entire sum of 

the sequences is unique and minimal. 

It`s simple for the case when it is necessary to 

calculate a saving algorithm, even for a large n . The list 

of restorations for a zero process, running on a computer 

with zero, consists of two parts. The first part is a sequence 

of thrifty algorithms, and the second part is filled with the 

remaining numbers. The recovery scheme consists of all 

recovery lists. A separate case of the Saving algorithm is 

the algorithm called the ideal ring bundle (IRB), described 

in [15]. The name of this algorithm comes from the IRB, 

which is a sequence of positive integers such that there are 

no two identical numbers or adjacent sums of them. These 

numbers are labeled and correspond to computer 

positions. The difference between the values of any two 

labels is called distance. The shortest construction for this 

series of labels is called the ideal ring bundle [12]. The 

search for the IRB becomes more difficult as the number 

of tags increases. This is known as an NP-complete task 

[8, 16]. The task of detecting IRBs for a large number of 

labels is still unresolved. 

A simple IRB is called the sequence 

 1 2,  ,  ...,  N NL l l l  of numbers on which all possible ring 

amounts exhausts the values of numbers of the natural 

series from 1 to  1 1NS N N   . 

An example of a six-dot IRB is shown in Table I. It 

is possible to measure all 6 31S   distances, that is, it is 

suitable for synthesis of the recovery scheme with 

6 1 32S    computers (32, because we take into account 
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that the countdown starts with a zero computer), so 

1Nn S  . 

TABLE I. Row amounts for IRB in the sixth order (1, 3, 2, 7, 8, 10)  

jp
 jq

 
1 2 3 4 5 6 

1 1 4 6 13 21 31 

2 31 3 5 12 20 30 

3 28 31 2 9 17 27 

4 26 29 31 7 15 25 

5 19 22 24 31 8 18 

6 11 14 16 23 31 10 

 

The sequence (1, 3, 2 7, 8, 10) is one of the simplest 

perfect rings of the 6th order. IRBs can also be represented 

as geometric shapes, where each number represents the 

sum between pairs of nearby rooms. 

In IRB, cyclic transitions are ignored, that is, 

situations when the result of the number of "jumps" for the 

process is greater than the number of computers in the 

cluster. "Jumping" is the distance between the damaged 

node and the node in which the process needs to be 

restarted. Including cyclic transitions give a new 

mathematical formulation with the detection of the longest 

sequence of positive integers such that the sum and sum 

of the entire module of sequences (including sequences of 

length one) n  are unique. This mathematical formulation 

of the computer problem poses a new, more powerful, 

IRB-based recovery scheme for a larger number of 

corrupted computers than known modular schemes. 

All these algorithms (Log, Savings, IRB and 

Modular) guarantee the optimality of a certain number of 

corrupted computers in the cluster. [3, 5] discusses the best 

possible recovery schemes for any number of corrupted 

computers. Because of the complexity of the problem, 

finding such a recovery scheme is a complex task. We 

only have the optimal recovery scheme for a maximum of 

21 computers in the cluster ( 21)n   [6]. 

New regeneration schemes based on optimal IRB 

lines guarantee optimal behavior for a much larger number 

of corrupted nodes [12]. 

Scheme of recovery IRB - a regular recovery scheme. 

For n  nodes in a cluster, we build a list of restorations 

using a known IRB with a sum of less than or equal to NS

, and the rest of the recovery list is filled with the 

remaining numbers up to 1NS   , for example, for 13n   

we have a list < 0, 1, 3, 9, 13, 2, 4, 5, 6, 7, 8, 10, 11, 12>. 

Recovery schemes are based on IRB rulers and are 

filled with numbers that construct new collapsing routes. 

IRB recovery schemes provide better optimization than 

circuits on the Golombs rulers [1, 7]. 

The algorithm for constructing ideal ring bundles 

with the accompanying matrix A  of a field ( )SGF p  of a 

polynomial ( )f x  in a natural basis involves the use of a 

matrix method for determining the coordinates of 

elements of the field ( ),SGF p  in which each S -

dimensional vector-column of coordinates elements of the 

field ( )SGF p  are found as the result of multiplying the 

matrix A  into another vector-column. 

The accompanying matrix of a polynomial 

01
1

1)( axaxaxxf s
s

s  
   has the following form: 

0

1

2

2

1

0 0 ... 0

1 0 ... 0

0 1 ... 0

... ... ... ... ...

0 0 ... 0

0 0 ... 1

S

S

a

a

a
A

a

a





 .  (2) 

The algorithm of synthesis consists of the following 

sequence of operations: 

1. Find the original polynomial f(x) of the third 

degree, which is irreducible over the field ( )GF p , where 

p is a simple number determined from the equation 

1N p  , where n is the order of the IRB, and S is an 

integer. 

2. Write the accompanying matrix A  of the original 

polynomial   3 2

2 1 0f x x a x a x a     irreducible over a 

field ( )GF p  in the natural basis: 

0

1

2

0 0

1 0

0 1

a

A a

a



 


.  (3) 

3. Multiplying the matrix A  by the vector column 

1

1

0 ,

0

b 

write the following vector-column 2b . Continue 

to fill  1 1nS N N    by successive columns, where 

each subsequent column is the result of multiplying the 

matrix A  of the previous column. 

4. Write the sequence numbers 1 2, , , ni i i  in vector 

columns having zero in the last line, and find the elements 

of the ring link according to the formula: 

 
1

1

, 1, 1

mod ,

i i

i

n n

b b if i N
k

b b S if i N


   

 
  . (4) 

5. Check whether the ring ring found is perfect. To 

do this we build a special table, which, in the case of IRB, 

each number in the range (1, 2, ..., )S  is R  times. 

To construct IRB by this algorithm, primitives are 

required for the field ( )SGF p  polynomials of degree 3 

that are irreducible. It should be noted that for different 

fields, different methods of constructing polynomials are 

used, which greatly complicates the implementation of 

algorithms for the synthesis of perfect knots based on the 
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use of the properties of expanded fields of Galois. 

Another problem that faces when generating perfect 

families of perfect knots based on this technique is to split 

the set of coefficients of the corresponding difference set 

into non-overlapping classes of coefficients, which are 

used as factors to find all the variants of ideal knots 

without exception [10, 12]. However, for the general case 

this task is not solved. Therefore, using classical methods, 

including group theoretical and theoretical-numerical, 

intensive search for fundamentally new approaches to 

solving the issue of generating complete families of 

perfect relationships [9, 11]. 

RESEARCH RESULTS 

In a number of clustered and distributed systems the 

projector has to come up with a recovery system, which 

defines, what operating capacity has to be redistributed in 

case of one or a few computers are shut down. The 

objective is to get a capacity, which would equally 

redistribute under any scenarios, even when the most 

unfavorable combinations of computer failures are 

reached. We are studying a cluster with identical n  nodes, 

which under usual circumstances do one process per node. 

All processes conduct an equal amount of operations. The 

recovery scheme guarantees the most favorable capacity 

distribution in the worst scenario, when k  computers are 

taking damage. Recovery schemes which are presented 

here can also be used in clusters with a number of 

independent processes on each computer. New recovery 

schemes are offered, where the first part of scheme is 

based on well-known ІRВ (collapsing routes do not 

overlap), and the other part has a projected path, where the 

next collapsing routes are unique in relation to the 

previous collapsing routes. 

The IRB recovery schemes guarantee better 

implementation than other existing schemes and are 

simple in calculation. There is no difference between these 

schemes if there are few nods in the cluster. But for a 

bigger cluster the IRB recovery scheme's behavior is 

better than other existing IRB schemes. For instance, for 

20 1 381 1 382n S      the IRB scheme guarantees an 

optimal worst behavior case for 1 20 1 21k N      

shutdowns. The objective of the work is to find 

appropriate IRB based recovery schemes, which would be 

better than the already existing ones and which could 

easily calculate a recovery for a hign n  of nods in a cluster 

on Golomb rulers. Indicating that such a recovery scheme 

is equally complicated in terms of calculation synthesis is 

a difficult task [1, 2]. 

The IRB recovery schemes can already be used in the 

commercial cluster system, defining a list in SunCluster, 

via using the scconf command. The results can also be 

used in external systems like telecommunication centers, 

which switch and send data to different nods in a 

distributed system (or clusters, where nods possess 

individual network addresses) [4, 14, 15, 17, 18]. With the 

help of quick IRB synthesis analysis, based on Galois field 

machine. 

The first parts of recovery schemes are built on the 

basis of ideal ring bundles, which are noted in Table II. 

The second part of the recovery system based on 

ideal ring bundles is built for an IRB with a higher number 

of elements (computers of a divided system), which are 

noted in Table III. 

TABLE II. FIRST PARTS OF IRB-BASED RECOVERY SCHEMES ( 21)N   

Amount of 

sequences NS  
N  

First part of recovery schemes on the basis of 
ideal ring bundles 

13 4  0, 1, 3, 9, 13 

21 5  0, 1, 4, 14, 16, 21 

31 6  0, 1, 3, 8, 12, 18, 31 

57 8  0, 1, 3, 13, 32, 36, 43, 52, 57 

73 9  0, 1, 3, 7, 15, 31, 36, 54, 63, 73 

91 10  0, 1, 3, 9, 27, 49, 56, 61, 77, 81, 91 

133 12  0, 1, 3, 12, 20, 34, 38, 81, 88, 94, 104, 109, 

133 
183 14  0, 1, 3, 16, 23, 28, 42, 76, 82, 86, 119, 137, 

154, 175, 183 

273 17  0, 1, 3, 7, 15, 31, 63, 90, 116, 127, 136, 181, 

194, 204, 233, 238, 255, 273 

307 18  0, 1, 3, 21, 25, 31, 68, 77, 91, 170, 177, 185, 
196, 212, 225, 257, 269, 274, 307 

381 20  0, 1, 3, 12, 17, 65, 75, 94, 117, 124, 132, 145, 

163, 167, 200, 271, 297, 303, 337, 357, 381 

The developed software that simulates the work of 

the recovery scheme based on IRB with the redistribution 

of processes. After running the program before starting to 

synthesize recovery schemes, you must enter: 

1. In the application, the entry parameters of an IRB 

of N  size (scales indicators of N  elements of an IRB). 

2. In the application, the number of computers, which 

are used in distributed computing, with amount to the sum 

of IRB elements NS  plus one. 

3. To enter the computer's number, which has taken 

damage and does not operate. 

CONCLUSIONS 

In this work, the complex of identical computers was 

studied, which, under normal circumstances, conduct one 

process. All the processes conduct the same amount of 

operations. It was researched that the task of finding the 

most favorable recovery schemes with n  computers 

matches the mathematical task of finding the longest 

sequence of positive integers, where all the numbers ale 

located and are unique and match an ideal ring bundle. In 

this work, such recovery schemes are studied, which 

optimally fit for the majority of turned off computers 

compared to existing schemes like those based on Golomb 

ruler. A program product is established and tested for 

synthesis of recovery scheme based on ideal ring bundles. 

TABLE III. SECOND PARTS OF IRB-BASED RECOVERY SCHEMES 

( 21)N   
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Amount of 

sequences NS  
N  

Second part of recovery schemes on the basis 

of ideal ring bundles 

13 4  2, 4 – 8, 10  12 

21 5  2, 3, 5 – 13, 15, 17 - 20 

31 6  2, 4 – 7, 9 – 11, 13 – 17, 19 - 30 

57 8  2, 4 – 12, 14 – 31, 33 -35, 37 – 42, 44 – 51, 

53 -56 

73 9  2, 4 – 6, 8 – 14, 16 – 30, 32 – 35, 37 – 53, 

55 – 62, 64 - 72 

91 10  2, 4 – 8, 10 – 26, 28 – 48, 50 – 55, 57 – 60, 

62 – 76, 78 – 80, 82 - 90 

133 12  2, 4 – 11, 13 – 19, 21 – 33, 35 – 37, 39 – 80, 

82 – 87, 89 – 93, 95 – 103, 105 – 108, 

110 - 132 

183 14  2, 4 – 15, 17 – 22, 24 – 27, 29 – 41, 43 – 75, 
77 – 81, 83 – 85, 87 – 118, 120 – 136, 138 – 

153, 155 – 174, 176 - 182 

273 17  2, 4 – 6, 8 – 14, 16 – 30, 32 – 62, 64 – 89, 

91 – 115, 117 – 126, 128 – 135, 137 – 180, 
182 – 193, 195 – 203, 205 – 232, 234 – 237, 

239 – 254, 256 - 272 

307 18  2, 4 – 20, 22 – 24, 26 – 30, 32 – 67, 69 – 76, 

78 – 90, 92 – 169, 171 – 176, 178 – 184, 

186 – 195, 197 – 211, 213 – 224, 226 – 256, 
258 – 268, 270 – 273, 275 - 306 

381 20  2, 4 – 11, 13 – 16, 18 – 64, 66 – 74, 76 – 93, 

95 – 116, 118 – 123, 125 – 131, 133 – 144, 

146 – 162, 164 – 166, 168 – 199, 201 – 270, 
272 – 296, 298 – 302, 304 – 336, 338 – 356, 

358 - 380 
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