
ECONTECHMOD. AN INTERNATIONAL QUARTERLY JOURNAL – 2019, Vol. 08, No. 1, 33-38

Synthesis of Recovery Schemes for Distributed Computing Based on Ideal Ring

Bundles

Riznyk O1., Vynnychuk R.2

1Department of Publishing Information Technologies, Lviv Polytechnic National University,

S. Bandery 28a, 79008 Lviv, Ukraine; e-mail: riznykoleg@gmail.com

2Department of Human Resource Management and Administration, Lviv Polytechnic National

University, S. Bandery 28a, 79008 Lviv, Ukraine; e-mail: vynnychuk.roksolana@gmail.com

Received February 08.2019: accepted March 11.2019

Abstract. Clusters and distributed systems allow for

error tolerance and high performance through shared use

of the load. When all computers work, we would like to

distribute the load equally among computers. When one or

more computers are broken, the load on these computers

should be redistributed to other computers in the cluster.

Redistribution determines the recovery scheme. The

recovery plan should keep the load as optimal as when

even the most unfavorable combinations of computers are

turned off, that is, we want to optimize the behavior of the

worst case. In this work, we find new regeneration

schemes based on so-called IRB and ideal ring loops and

synthesize the corresponding combinatorial structures.

They are optimal for many cases of recovery schemes.

Keywords: сluster, distributed system, Golomb ruler,

ideal ring bundle, recovery scheme.

INTRODUCTION

Application of recovery schemes in distributed

computing for information systems is due to the

complexity of such modern systems and the need to

prevent errors in working in a distributed network when

parts of computers are abandoned [4, 12].

Load balancing and suitability are important in

distributing online trusted systems. Krishna and Shin

define tolerance for error as "the ability of the system to

respond immediately to an unexpected error of the

technical support or program" [13]. Many compromise-

tolerant systems reflect all actions, for example, each

action is executed on two or more dual systems in such a

way that, if one does, the other can accept it. The

advantage of using clusters, apart from tolerance to error,

is the load that is shared between computers [3, 14].

One can manage this task dynamically, where

transfer decisions do not depend on the actual state of the

system. The task with dynamic politics is rather

unpredictable.Otherwise - you should use a static policy,

which is generally based on the information behavior of

the system. Here, the transfer solution is independent of

the actual current state of the system. This makes them less

complex and more predictable than dynamic policies [2,

4].

The task, studied in this work, is: how to evenly

distribute the current computers when one or more

computers in the cluster are turned off and how to build

these mathematical models most importantly? Let's

consider it a static redistribution of work.

FORMULATION OF THE PROBLEM

There is a main computer that executes the

application under normal conditions and a secondary

computer that accepts the task when the host computer is

turned off. Perhaps there is also a third computer that takes

a task when the main and secondary computers are off, and

so on. When all computers are working, we take steps to

spread the load evenly [3]. The load on some computers

will, however, grow when one or more computers are shut

down, but under these conditions we would like to

distribute the load as evenly as possible on the remaining

computers.

The distribution of the load when the computer is off

is resolved by a list of recovery processes that are

performed on an erroneous computer. The set of all

recovery lists is called recovery. Consequently, the

distribution of the load is completely determined by the

recovery scheme regardless of the number of computers

that are turned off [5, 12].

The problem of identifying optimal (or even better)

recovery schemes is studied in [4, 6]. We will find

recovery schemes that guarantee the load balances for

more computers in the cluster. This work looks at,

including the worst case scenario, when a computer that is

already redistributing another process from a pre-broken

computer has failed.

SOLVING THE PROBLEM KEY

We assume that the work performed by each of the N

computers must be moved as one atomic unit. This is a

very common scenario, which includes cases where:

• The work performed by the computer is done from

one external system (stacked recovery schemes work in

external systems, such as the second, third, fourth, etc.,

alternative locations (alternative cluster nodes)

mailto:riznykoleg@gmail.com

34 O. RIZNYK, R. VYNNYCHUK

destination, if the main, secondary, etc. the destination

computer is disabled);

• There is one network address for each computer and

we use the IP protocol (or similar technique);

• All work done by the computer, does one process or

group of related processes using shared internal resources

and therefore must be moved as one unit.

In [14], a case is considered when a number of

independent processes are performed by each computer.

These results can be easily generalized to the case with the

number of independent processes on each computer using

the same technique.

Consider a cluster with n identical nodes, which

under normal conditions perform one process each. All

processes perform the same amount of work. We see a

schema recovery for the cluster that determines where the

process should start again if its current node is off. The

recovery scheme should keep the load balanced to the

cluster when even the most unfavorable combination of

nodes is off. The recovery scheme must be calculated for

a large n in real time.

The recovery scheme R consists of n restores

lists - one list per process. Let R be a sequence of

distances, that is, a sequence of positive integers

1 2 1, , ..., nS s s s where
1

1, , 1
i

j

j

i ns

 - the

distance between the damaged node and the node at which

process must be restarted in the i -th step. Let 0R be a

process restore 0 (which runs on a computer 0). The list of

restorations from which we construct the sequence S :

0 1 1 2 1 2 3 1 10, , , , ..., ... nR s s s s s s s s (1).

When one node in the cluster breaks down, the load

on the most loaded node in the cluster (we call that node

Z) will contain two jobs: in fact, it's work from the node.

When two nodes in the cluster are turned off, there are two

possibilities. If both are initially in sequence, the load on
Z can contain three jobs: its own, from one node and from

another node [3, 5]. This situation is presented in Fig. 1a.

Nodes and - damaged nodes. The second option is - when

the first two numbers in the sequence are different. In this

case, Z can contain only two works: its own and from one

node or from another node. This situation is presented in

Fig. 1b. Therefore, the load in the worst case on Z is less

than when 1 2s s . Fig. 1b also shows the situation when

three nodes in the cluster are turned off.

Then the load on Z can contain three jobs: its own

and from nodes. Note that in this case the node is also a

damaged node. The worst case for the three damaged

nodes is when the first of the three numbers in the

sequence is equal, that is, 1 2 3s s s . In this case, Z will

contain four works: its own and from the knots.

In [6], authors consider the task of detecting a

recovery scheme that can guarantee optimal load

distribution in the worst case when most k computers are

turned off. Schemes should have as much as possible a k

. Authors present and prove it in the Log algorithm, it does

a recovery scheme that guarantees optimality, where the

largest number of 2log n computers is disabled. The

optimal means when the maximum number of processes

on the same computer after k offsets is ()MV k , where

()MV k provides the lower limit for any static recovery

scheme [4, 6].

Fig. 1. The script with three broken knots.

Another algorithm, called saving, is presented in

[10]. This algorithm generates recovery schemes that give

optimality to a greater number of cases than the Log

algorithm (that is, saving provides optimal guarantees

when more than 2 logins are off.) The saving algorithm is

based on the mathematical problem of identifying a

sequence of positive integers such that the entire sum of

the sequences is unique and minimal.

It`s simple for the case when it is necessary to

calculate a saving algorithm, even for a large n . The list

of restorations for a zero process, running on a computer

with zero, consists of two parts. The first part is a sequence

of thrifty algorithms, and the second part is filled with the

remaining numbers. The recovery scheme consists of all

recovery lists. A separate case of the Saving algorithm is

the algorithm called the ideal ring bundle (IRB), described

in [15]. The name of this algorithm comes from the IRB,

which is a sequence of positive integers such that there are

no two identical numbers or adjacent sums of them. These

numbers are labeled and correspond to computer

positions. The difference between the values of any two

labels is called distance. The shortest construction for this

series of labels is called the ideal ring bundle [12]. The

search for the IRB becomes more difficult as the number

of tags increases. This is known as an NP-complete task

[8, 16]. The task of detecting IRBs for a large number of

labels is still unresolved.

A simple IRB is called the sequence

 1 2, , ..., N NL l l l of numbers on which all possible ring

amounts exhausts the values of numbers of the natural

series from 1 to 1 1NS N N .

An example of a six-dot IRB is shown in Table I. It

is possible to measure all 6 31S distances, that is, it is

suitable for synthesis of the recovery scheme with

6 1 32S computers (32, because we take into account

SYNTHESIS OF RECORVERY SCHEMES FOR DISTRIBUTED COMPUTING BASED… 35

that the countdown starts with a zero computer), so

1Nn S .

TABLE I. Row amounts for IRB in the sixth order (1, 3, 2, 7, 8, 10)

jp
 jq

1 2 3 4 5 6

1 1 4 6 13 21 31

2 31 3 5 12 20 30

3 28 31 2 9 17 27

4 26 29 31 7 15 25

5 19 22 24 31 8 18

6 11 14 16 23 31 10

The sequence (1, 3, 2 7, 8, 10) is one of the simplest

perfect rings of the 6th order. IRBs can also be represented

as geometric shapes, where each number represents the

sum between pairs of nearby rooms.

In IRB, cyclic transitions are ignored, that is,

situations when the result of the number of "jumps" for the

process is greater than the number of computers in the

cluster. "Jumping" is the distance between the damaged

node and the node in which the process needs to be

restarted. Including cyclic transitions give a new

mathematical formulation with the detection of the longest

sequence of positive integers such that the sum and sum

of the entire module of sequences (including sequences of

length one) n are unique. This mathematical formulation

of the computer problem poses a new, more powerful,

IRB-based recovery scheme for a larger number of

corrupted computers than known modular schemes.

All these algorithms (Log, Savings, IRB and

Modular) guarantee the optimality of a certain number of

corrupted computers in the cluster. [3, 5] discusses the best

possible recovery schemes for any number of corrupted

computers. Because of the complexity of the problem,

finding such a recovery scheme is a complex task. We

only have the optimal recovery scheme for a maximum of

21 computers in the cluster (21)n [6].

New regeneration schemes based on optimal IRB

lines guarantee optimal behavior for a much larger number

of corrupted nodes [12].

Scheme of recovery IRB - a regular recovery scheme.

For n nodes in a cluster, we build a list of restorations

using a known IRB with a sum of less than or equal to NS

, and the rest of the recovery list is filled with the

remaining numbers up to 1NS , for example, for 13n

we have a list < 0, 1, 3, 9, 13, 2, 4, 5, 6, 7, 8, 10, 11, 12>.

Recovery schemes are based on IRB rulers and are

filled with numbers that construct new collapsing routes.

IRB recovery schemes provide better optimization than

circuits on the Golombs rulers [1, 7].

The algorithm for constructing ideal ring bundles

with the accompanying matrix A of a field ()SGF p of a

polynomial ()f x in a natural basis involves the use of a

matrix method for determining the coordinates of

elements of the field (),SGF p in which each S -

dimensional vector-column of coordinates elements of the

field ()SGF p are found as the result of multiplying the

matrix A into another vector-column.

The accompanying matrix of a polynomial

01
1

1)(axaxaxxf s
s

s
 has the following form:

0

1

2

2

1

0 0 ... 0

1 0 ... 0

0 1 ... 0

...

0 0 ... 0

0 0 ... 1

S

S

a

a

a
A

a

a

 . (2)

The algorithm of synthesis consists of the following

sequence of operations:

1. Find the original polynomial f(x) of the third

degree, which is irreducible over the field ()GF p , where

p is a simple number determined from the equation

1N p , where n is the order of the IRB, and S is an

integer.

2. Write the accompanying matrix A of the original

polynomial 3 2

2 1 0f x x a x a x a irreducible over a

field ()GF p in the natural basis:

0

1

2

0 0

1 0

0 1

a

A a

a

. (3)

3. Multiplying the matrix A by the vector column

1

1

0 ,

0

b

write the following vector-column 2b . Continue

to fill 1 1nS N N by successive columns, where

each subsequent column is the result of multiplying the

matrix A of the previous column.

4. Write the sequence numbers 1 2, , , ni i i in vector

columns having zero in the last line, and find the elements

of the ring link according to the formula:

1

1

, 1, 1

mod ,

i i

i

n n

b b if i N
k

b b S if i N

 . (4)

5. Check whether the ring ring found is perfect. To

do this we build a special table, which, in the case of IRB,

each number in the range (1, 2, ...,)S is R times.

To construct IRB by this algorithm, primitives are

required for the field ()SGF p polynomials of degree 3

that are irreducible. It should be noted that for different

fields, different methods of constructing polynomials are

used, which greatly complicates the implementation of

algorithms for the synthesis of perfect knots based on the

36 O. RIZNYK, R. VYNNYCHUK

use of the properties of expanded fields of Galois.

Another problem that faces when generating perfect

families of perfect knots based on this technique is to split

the set of coefficients of the corresponding difference set

into non-overlapping classes of coefficients, which are

used as factors to find all the variants of ideal knots

without exception [10, 12]. However, for the general case

this task is not solved. Therefore, using classical methods,

including group theoretical and theoretical-numerical,

intensive search for fundamentally new approaches to

solving the issue of generating complete families of

perfect relationships [9, 11].

RESEARCH RESULTS

In a number of clustered and distributed systems the

projector has to come up with a recovery system, which

defines, what operating capacity has to be redistributed in

case of one or a few computers are shut down. The

objective is to get a capacity, which would equally

redistribute under any scenarios, even when the most

unfavorable combinations of computer failures are

reached. We are studying a cluster with identical n nodes,

which under usual circumstances do one process per node.

All processes conduct an equal amount of operations. The

recovery scheme guarantees the most favorable capacity

distribution in the worst scenario, when k computers are

taking damage. Recovery schemes which are presented

here can also be used in clusters with a number of

independent processes on each computer. New recovery

schemes are offered, where the first part of scheme is

based on well-known ІRВ (collapsing routes do not

overlap), and the other part has a projected path, where the

next collapsing routes are unique in relation to the

previous collapsing routes.

The IRB recovery schemes guarantee better

implementation than other existing schemes and are

simple in calculation. There is no difference between these

schemes if there are few nods in the cluster. But for a

bigger cluster the IRB recovery scheme's behavior is

better than other existing IRB schemes. For instance, for

20 1 381 1 382n S the IRB scheme guarantees an

optimal worst behavior case for 1 20 1 21k N

shutdowns. The objective of the work is to find

appropriate IRB based recovery schemes, which would be

better than the already existing ones and which could

easily calculate a recovery for a hign n of nods in a cluster

on Golomb rulers. Indicating that such a recovery scheme

is equally complicated in terms of calculation synthesis is

a difficult task [1, 2].

The IRB recovery schemes can already be used in the

commercial cluster system, defining a list in SunCluster,

via using the scconf command. The results can also be

used in external systems like telecommunication centers,

which switch and send data to different nods in a

distributed system (or clusters, where nods possess

individual network addresses) [4, 14, 15, 17, 18]. With the

help of quick IRB synthesis analysis, based on Galois field

machine.

The first parts of recovery schemes are built on the

basis of ideal ring bundles, which are noted in Table II.

The second part of the recovery system based on

ideal ring bundles is built for an IRB with a higher number

of elements (computers of a divided system), which are

noted in Table III.

TABLE II. FIRST PARTS OF IRB-BASED RECOVERY SCHEMES (21)N

Amount of

sequences NS
N

First part of recovery schemes on the basis of
ideal ring bundles

13 4 0, 1, 3, 9, 13

21 5 0, 1, 4, 14, 16, 21

31 6 0, 1, 3, 8, 12, 18, 31

57 8 0, 1, 3, 13, 32, 36, 43, 52, 57

73 9 0, 1, 3, 7, 15, 31, 36, 54, 63, 73

91 10 0, 1, 3, 9, 27, 49, 56, 61, 77, 81, 91

133 12 0, 1, 3, 12, 20, 34, 38, 81, 88, 94, 104, 109,

133
183 14 0, 1, 3, 16, 23, 28, 42, 76, 82, 86, 119, 137,

154, 175, 183

273 17 0, 1, 3, 7, 15, 31, 63, 90, 116, 127, 136, 181,

194, 204, 233, 238, 255, 273

307 18 0, 1, 3, 21, 25, 31, 68, 77, 91, 170, 177, 185,
196, 212, 225, 257, 269, 274, 307

381 20 0, 1, 3, 12, 17, 65, 75, 94, 117, 124, 132, 145,

163, 167, 200, 271, 297, 303, 337, 357, 381

The developed software that simulates the work of

the recovery scheme based on IRB with the redistribution

of processes. After running the program before starting to

synthesize recovery schemes, you must enter:

1. In the application, the entry parameters of an IRB

of N size (scales indicators of N elements of an IRB).

2. In the application, the number of computers, which

are used in distributed computing, with amount to the sum

of IRB elements NS plus one.

3. To enter the computer's number, which has taken

damage and does not operate.

CONCLUSIONS

In this work, the complex of identical computers was

studied, which, under normal circumstances, conduct one

process. All the processes conduct the same amount of

operations. It was researched that the task of finding the

most favorable recovery schemes with n computers

matches the mathematical task of finding the longest

sequence of positive integers, where all the numbers ale

located and are unique and match an ideal ring bundle. In

this work, such recovery schemes are studied, which

optimally fit for the majority of turned off computers

compared to existing schemes like those based on Golomb

ruler. A program product is established and tested for

synthesis of recovery scheme based on ideal ring bundles.

TABLE III. SECOND PARTS OF IRB-BASED RECOVERY SCHEMES

(21)N

SYNTHESIS OF RECORVERY SCHEMES FOR DISTRIBUTED COMPUTING BASED… 37

Amount of

sequences NS
N

Second part of recovery schemes on the basis

of ideal ring bundles

13 4 2, 4 – 8, 10 12

21 5 2, 3, 5 – 13, 15, 17 - 20

31 6 2, 4 – 7, 9 – 11, 13 – 17, 19 - 30

57 8 2, 4 – 12, 14 – 31, 33 -35, 37 – 42, 44 – 51,

53 -56

73 9 2, 4 – 6, 8 – 14, 16 – 30, 32 – 35, 37 – 53,

55 – 62, 64 - 72

91 10 2, 4 – 8, 10 – 26, 28 – 48, 50 – 55, 57 – 60,

62 – 76, 78 – 80, 82 - 90

133 12 2, 4 – 11, 13 – 19, 21 – 33, 35 – 37, 39 – 80,

82 – 87, 89 – 93, 95 – 103, 105 – 108,

110 - 132

183 14 2, 4 – 15, 17 – 22, 24 – 27, 29 – 41, 43 – 75,
77 – 81, 83 – 85, 87 – 118, 120 – 136, 138 –

153, 155 – 174, 176 - 182

273 17 2, 4 – 6, 8 – 14, 16 – 30, 32 – 62, 64 – 89,

91 – 115, 117 – 126, 128 – 135, 137 – 180,
182 – 193, 195 – 203, 205 – 232, 234 – 237,

239 – 254, 256 - 272

307 18 2, 4 – 20, 22 – 24, 26 – 30, 32 – 67, 69 – 76,

78 – 90, 92 – 169, 171 – 176, 178 – 184,

186 – 195, 197 – 211, 213 – 224, 226 – 256,
258 – 268, 270 – 273, 275 - 306

381 20 2, 4 – 11, 13 – 16, 18 – 64, 66 – 74, 76 – 93,

95 – 116, 118 – 123, 125 – 131, 133 – 144,

146 – 162, 164 – 166, 168 – 199, 201 – 270,
272 – 296, 298 – 302, 304 – 336, 338 – 356,

358 - 380

REFERENCES

1. Brglez F., Bošković B. and Brest J., 2017. On

asymptotic complexity of the optimum Golomb ruler

problem: From established stochastic methods to self-

avoiding walks, IEEE Congress on Evolutionary

Computation (CEC), San Sebastian. 1000-1007. doi:

10.1109/CEC.2017.7969417.

2. Vyas J., Bansal S. and Sharma K.. 2016. Generation

of optimal Golomb rulers for FWM crosstalk

reduction: BB-BC and FA approaches," 2016

International Conference on Signal Processing and

Communication (ICSC), Noida, 74-78. doi:

10.1109/ICSPCom.2016.7980551.

3. Klonowska, K., Lundberg, L., Lennerstad, H.,

Svahnberg, C.: 2004. Using Modulo Rulers for

Optimal Recovery Schemes in Distributed

Computing, in Proceedings of 10th International

Symposium PRDC Papeete, Tahiti, French

Polynesia, March. 133-142.

4. Lundberg, L., Häggander, D., Klonowska, K.,

Svahnberg, C., 2003 Recovery Schemes for High

Availability and High Performance Distributed Real-

Time Computing, in Proceedings of 17th International

Parallel & Distributed Processing Symposium IPDPS

2003, Nice, France, April 2003, pp. 122.

5. Lundberg, L., Häggander, D., Klonowska, K.,

Svahnberg, C., 2003. Recovery Schemes for High

Availability and High Performance Distributed Real-

Time Computing, in Proceedings of 17th International

Parallel & Distributed Processing Symposium IPDPS

2003, Nice, France, April 2003, pp. 122, CD-ROM.

6. Lundberg, L., Svahnberg, C. 2011. Optimal

Recovery Schemes for High-Availability Cluster and

Distributed Computing, Journal of Parallel and

Distributed Computing, 61(11), 2011, pp. 1680-1691.

7. Memarsadeghi N. 2016. NASA Computational Case

Study: Golomb Rulers and Their Applications," in

Computing in Science & Engineering, vol. 18, no. 6,

pp. 58-62, Nov.-Dec. 2016. doi:

10.1109/MCSE.2016.118.

8. Oshiga O., Severi S. and Abreu G. T. F. de. 2016.

Superresolution Multipoint Ranging With Optimized

Sampling via Orthogonally Designed Golomb Rulers.

In IEEE Transactions on Wireless Communications,

vol. 15, no. 1, pp. 267-282, Jan. 2016.

doi: 10.1109/TWC.2015.2470687.

9. Riznyk O., Balych B. and Yurchak I. 2017. A

synthesis of barker sequences is by means of

numerical bundles," 2017 14th International

Conference The Experience of Designing and

Application of CAD Systems in Microelectronics

(CADSM), Lviv, 2017, 82-84. doi:

10.1109/CADSM.2017.7916090.

10. Riznyk O., Povshuk O., Kynash Y. and Yurchak I.

2017. Composing method of anti-interference codes

based on non-equidistant structures. 2017 XIIIth

International Conference on Perspective

Technologies and Methods in MEMS Design

(MEMSTECH), Lviv, 2017, pp. 15-17. doi:

10.1109/MEMSTECH.2017.7937522.

11. Riznyk O., Parubchak V. and Skybajlo-Leskiv D.,

"Information Encoding Method of Combinatorial

Configuration," 2007 9th International Conference -

The Experience of Designing and Applications of

CAD Systems in Microelectronics, Lviv-Polyana,

2007, pp. 370-370. doi:

10.1109/CADSM.2007.4297583.

12. Riznyk O., Kynash Y., Povshuk O. and Kovalyk V.
2016. Recovery schemes for distributed computing

based on BIB-schemes. In 2016 IEEE First

International Conference on Data Stream Mining &

Processing (DSMP), Lviv, 2016, 134-137. doi:

10.1109/DSMP.2016.7583524.

13. Kaczmarek P., Mańkowski T. and Tomczyński J.,

2017. Towards sensor position-invariant hand gesture

recognition using a mechanomyographic interface,"

2017 Signal Processing: Algorithms, Architectures,

Arrangements, and Applications (SPA), Poznan,

2017, 53-58. doi: 10.23919/SPA.2017.8166837.

14. Li P., Dong J., Liu X., Wang G., Li Z. and Liu X..

2017. PITR: An Efficient Single-Failure Recovery

Scheme for PIT-Coded Cloud Storage Systems," 2017

IEEE 36th Symposium on Reliable Distributed

Systems (SRDS), Hong Kong, , pp. 259-261. doi:

10.1109/SRDS.2017.38.

15. R. Oleg, K. Yurii, P. Oleksandr and B. Bohdan.

2017. Information technologies of optimization of

structures of the systems are on the basis of

combinatorics methods," 2017 12th International

38 O. RIZNYK, R. VYNNYCHUK

Scientific and Technical Conference on Computer

Sciences and Information Technologies (CSIT), Lviv,

232-235. doi: 10.1109/STC-CSIT.2017.8098776.

16. Blackburn S. R. and Etzion T.. 2017. "PIR array

codes with optimal PIR rates," 2017 IEEE

International Symposium on Information Theory

(ISIT), Aachen, 2017, 2658-2662. doi:

10.1109/ISIT.2017.8007011.

17. Shakhovska N., Veres O., Hirnyak M. 2016.
Generalized formal model of big data.

ECONTECHMOD 5, (2), 33–38.

18. Bobalo Y., Politanskyi R., Klymash M. 2015.
Traffic simulation in a telecommunication system

based on queuing systems with different input flows.

ECONTECHMOD 4, (1), 11–15.

