Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The aim of this research was to investigate the effects of contact pressure and lubrication on the interfacial heat transfer coefficient (IHTC) between AA7075 sheet and H13 tool steel and the in-die quenching performance in hot stamping. Firstly, a series of designed in-die quenching experiments were performed using different contact pressures, 0.05–30 MPa and lubrication conditions to determine the IHTC values using an efficient methodology. Secondly, temperature evolution of the tools and blank during the in-die quenching was investigated. Mechanical properties of material in-die quenched under different process conditions, were measured to determine their relation to quench conditions. The results have shown that IHTC values increased with increasing contact pressure and use of lubricant. A strength level of T6 condition could be obtained using a contact pressure greater than 5 MPa in the lubricated condition.
Czasopismo
Rocznik
Tom
Strony
723--730
Opis fizyczny
Bibliogr. 21 poz., rys., tab., wykr.
Twórcy
autor
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China
autor
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China
autor
- Department of Mechanical Engineering, Imperial College London, London SW72AZ, UK
autor
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China
autor
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Department of Mechanical Engineering, Imperial College London, London SW72AZ, UK
Bibliografia
- [1] Y.J. Liu, Y. Liu, J.N. Chen, The impact of the Chinese automotive industry: scenarios based on the national environmental goals, J. Clean. Prod. 96 (2015) 102–109.
- [2] A. Foster, T. Dean, J. Lin, Process for forming aluminium alloy sheet components, European Patent, EP2324137 (2013).
- [3] O. El Fakir, L. Wang, D. Balint, J.P. Dear, J. Lin, T.A. Dean, Numerical study of the solution heat treatment, forming, and in-die quenching (HFQ) process on AA5754, Int. J. Mach. Tools Manuf. 87 (2014) 39–48.
- [4] J. Zhou, B. Wang, J. Lin, L. Fu, Optimization of an aluminum alloy anti-collision side beam hot stamping process using a multi-objective genetic algorithm, Arch. Civil Mech. Eng. 13 (3) (2013) 401–411.
- [5] M.S. Mohamed, A.D. Foster, J. Lin, D.S. Balint, T.A. Dean, Investigation of deformation and failure features in hot stamping of AA6082: experimentation and modelling, Int. J. Mach. Tools Manuf. 53 (1) (2012) 27–38.
- [6] M. Gao, M. Wang, L. Wen, G. Li, TTP curves and microstructural evolution mechanism after quenching in aluminum alloy 6082, Metallogr. Microstruct. Anal. 1 (3–4) (2012) 165–169.
- [7] M. Wang, C. Zhang, H.F. Xiao, B. Li, Inverse evaluation of equivalent contact heat transfer coefficient in hot stamping of boron steel, Int. J. Adv. Manuf. Technol. 87 (9–12) (2016) 2925–2932.
- [8] K. Takabatake, X. Sun, M. Sakai, D. Pavlidis, J. Xiang, C.C. Pain, Numerical study on a heat transfer model in a Lagrangian fluid dynamics simulation, Int. J. Heat Mass Transf. 103 (2016) 635–645.
- [9] W. Nshama, J. Jeswiet, P.H. Oosthuizen, Evaluation of temperature and heat transfer conditions at the metal forming interface, J. Mater. Process. Technol. 45 (1–4) (1994) 637–642.
- [10] E.J.F.R. Caron, K.J. Daun, M.A. Wells, Experimental heat transfer coefficient measurements during hot forming die quenching of boron steel at high temperatures, Int. J. Heat Mass Transf. 71 (2014) 396–404.
- [11] K. Zhao, B. Wang, Y. Chang, X. Tang, J. Yan, Comparison of the methods for calculating the interfacial heat transfer coefficient in hot stamping, Appl. Therm. Eng. 79 (2015) 17–26.
- [12] Q. Bai, J. Lin, L. Zhan, T.A. Dean, D.S. Balint, Z. Zhang, An efficient closed-form method for determining interfacial heat transfer coefficient in metal forming, Int. J. Mach. Tools Manuf. 56 (2012) 102–110.
- [13] K. Ji, O. El Fakir, H.X. Gao, L.L. Wang, Determination of heat transfer coefficient for hot stamping process, Mater. Today- Proc. 2 (2015) 434–439.
- [14] J.M. Lee, I.K. Lee, K.H. Lee, D.S. Kim, B.M. Kim, FEA technique of hot plate forming process using cell-typed die with cooling device, Trans. Nonferrous Metals Soc. China 22 (22) (2012) S831–S837.
- [15] Y. Chang, X.H. Tang, K.M. Zhao, P. Hu, Y.C. Wu, Investigation of the factors influencing the interfacial heat transfer coefficient in hot stamping, J. Mater. Process. Technol. 228 (2016) 25–33.
- [16] H. Gong, Research on Evolution and Evaluation Model of Residual Stress in Aluminum Alloy Thick Plate, Central South University, 2011.
- [17] P. Hu, L. Ying, Y. Li, Z. Liao, Effect of oxide scale on temperature-dependent interfacial heat transfer in hot stamping process, J. Mater. Process. Technol. 213 (9) (2013) 1475–1483.
- [18] W.Y. Ma, B.Y. Wang, L. Fu, J. Zhou, M.D. Huang, Influence of process parameters on deep drawing of AA6111 aluminum alloy at elevated temperatures, J. Central South Univ. 22 (4) (2015) 1167–1174.
- [19] M. Shamanian, H. Mostaan, M. Safari, J.A. Szpunar, Friction stir modification of GTA 7075-T6 Al alloy weld joints: EBSD study and microstructural evolutions, Arch. Civil Mech. Eng. 17 (3) (2017) 574–585.
- [20] A. Keci, N.R. Harrison, S.G. Luckey, Experimental Evaluation of the Quench Rate of AA7075, 2014 SAE Technical Paper 1.
- [21] V.K. Jain, Determination of heat transfer coefficient for forging applications, J. Mater. Shap. Technol. 8 (3) (1990) 193–202.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2dbd0eea-caec-49f2-9783-c710c7a1918b