PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Use of pumping units equipped with oscillating hydraulic pressure intensifiers for displacement of cylinders with heavy loads over the entire stroke

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Working and moving in confined, limited and narrow spaces, specific to underground mining activities, also requires the use of hydraulically operated equipment, capable of developing large forces, with small dimensions. An example of such equipment includes pumping units comprising low-pressure electric pumps and oscillating hydraulic pressure intensifiers. They use low pressure in the primary side of the intensifier and generate high pressure in the secondary side of the intensifier. Such pumping units are usually used to achieve and maintain high pressure, either in the volumes of closed spaces (in strength tests on pipes and tanks) or at the end of the active stroke of hydraulic cylinders (in hydraulic presses). On an experimental laboratory bench, which comprises a test cylinder, powered by a pumping unit, equipped with an oscillating hydraulic pressure intensifier, and a load cylinder, powered by another pumping unit, with the possibility of load control, the authors show that: the application range of these pumping units can be extended in the third direction, too, useful for underground mining activities, namely for drive of hydraulic cylinders with low gauge / displacement speeds and constant high load (high working pressure) over the entire working stroke length; the uniformity of displacement of these cylinders, with load throughout the stroke length, which are powered and driven with such pumping units, is slightly affected by the pulsating mode of operation of the hydraulic pressure intensifier. A set of experimental measurement results is presented for a constant value of the load over the entire displacement stroke of the test cylinder.
Czasopismo
Rocznik
Strony
238--248
Opis fizyczny
Bibliogr. 20 poz., rys., wykr., zdj.
Twórcy
  • National Institute of Research & Development for Optoelectronics / INOE 2000-subsidiary Hydraulics and Pneumatics Research Institute –IHP Bucharest, Romania
  • National Institute of Research & Development for Optoelectronics / INOE 2000-subsidiary Hydraulics and Pneumatics Research Institute –IHP Bucharest, Romania
  • National Institute of Research & Development for Optoelectronics / INOE 2000-subsidiary Hydraulics and Pneumatics Research Institute –IHP Bucharest, Romania
  • National Institute of Research & Development for Optoelectronics / INOE 2000-subsidiary Hydraulics and Pneumatics Research Institute –IHP Bucharest, Romania
Bibliografia
  • [1] Levinsen A.: Scanwill fliud power Unique hydraulic pressure intensifier solutions. https://www.luvrahydraulik. de/fileadmin/web_data/downloads/Luvra-Hydraulik-Scanwill-0915.pdf [accessed: 29.08.2022]
  • [2] Gannon M.: How can hydraulic pressure intensifiers improve your system design? https://www.fluidpowerworld.com/can-hydraulic-pressure-intensifiers-improve-system-design [accessed: 29.08.2022]
  • [3] https://www.scanwill.com/files/documents/Scanwill-productsheet-en.pdf [accessed: 29.08.2022]
  • [4] Wang F., Gu L., Chen Y.: A hydraulic pressure-boost system based on high-speed On Off valves. IEEE/ASME Trans. Mechatronics 2013. 18(2), pp. 733-743. DOI: 10.1109/TMECH.2011.2182654
  • [5] Yang F., Tadano K., Li G., Kagawa T.: Analysis of the Energy Efficiency of a Pneumatic Booster Regulator with Energy Recovery. Applied Sciences 2017. 7(8), paper ID 816. DOI:10.3390/app7080816
  • [6] Nazarov F., Rakova E., Weber J., Vardini A. R.: A Novel Approach for Pneumatic Pressure Booster. In: Proceedings of 11th International Fluid Power Conference 11. IFK; 2018. vol. 3, pp. 222-235. DOI: 10.18154/RWTH-2018-224786
  • [7] Günaydın A.C., Halkacı M., Ateş F., Halkacı H.S.: Experimental Research of the Usability on Double Acting Intensifiers in Hydroforming. In: Proceedings of the MATEC Web of Conferences 220 ICMSC 2018. 04001. https://www.matec-conferences.org/articles/matecconf/pdf/2018/79/matecconf_icmsc2018_04006.pdf [accesed:13.09.2021]
  • [8] Khandekar S., Dollinger N., Groll M.: Understanding operational regimes of closed loop pulsating heat pipes: an experimental study. Applied Thermal Engineering 2003. 23(6), pp. 707-719. DOI: 10.1016/S1359- 4311(02)00237-5
  • [9] Fuqiang C., Rendong W., Chaolong Y., Wei W., Wei J.: Research on Velocity Fluctuation of High Pressure and High Flow Double Booster Cylinder Hydraulic System. Hindawi Mathematical Problems in Engineering 2020. Article ID 2648508, 12 pages. DOI: 10.1155/2020/2648508
  • [10] Zwier M. P., vanGerner H. J., Wits W. W.: Modelling and experimental investigation of a thermally driven self-oscillating pump. Applied Thermal Engineering 2017. 126, pp. 1126-1133. DOI: 10.1016/j.applthermaleng.2017.02.063
  • [11] Dobson R.T.: Theoretical and experimental modelling of an open oscillatory heat pipe including gravity. International Journal of Thermal Sciences 2004. 43(2), pp. 113-119. DOI: 10.1016/j.ijthermalsci.2003.05.003
  • [12] Zardin B., Cillo G., Zavadinka P., Hanusovsky J., Borghi M.: Design and modelling of a cartridge pressure amplifier. In: Proceedings of the ASME/JSME/KSME Joint Fluids Engineering Conference; 2019. vol. 1, article no. UNSP V001T01A043. DOI: 10.1115/AJKFluids2019-5474
  • [13] Zardin B., Cillo G., Borghi M., Zavadinka P., Hanusovsky J.: Modelling and simulation of a cartridge pressure amplifier. In: Proceedings of the ASME-BATH Symposium on Fluid Power and Motion Control; 2018. Article no. V001T01A057
  • [14] Espersen C.: Pressure Boosters in Hydraulic Systems A Solution Which Is Often Overlooked. https://nanopdf.com/download/pressure-boosters-in-hydraulic-systems_pdf [accessed: 13.09.2021]
  • [15] Pioneer Machine Tools, Inc.: The increase pressure actuation system of hydraulic boosters HC series. http://www.pmt-pioneer.com/en/product-detail5.html [accessed: 13.09.2021]
  • [16] https://www.minibooster.com/hc7/ [accessed: 13.09.2021]
  • [17] Bartnicki A., Klimek A.: The research of hydraulic pressure intensifier for use in electric drive system. IEEE Access 2019. 7, pp. 20172-77. DOI 10.1109/ACCESS.2019.2897148
  • [18] Popescu T.-C., Chirita P.-Al., Popescu A. I.: Increasing energy efficiency and flow rate regularity in facilities, machinery and equipment provided with high operating pressure and low flow rate hydraulic systems. In: Proceedings of 18th International Multidisciplinary Scientific GeoConference SGEM; 2018. vol. 18, pp. 401-408. DOI: 10.5593/sgem2018/4.1
  • [19] Popescu T.C., Chiriță A.P., Popescu A.-M.C.: Research on the assessment of flow and pressure pulses in oscillating hydraulic intensifiers. Mining Machines 2020. (4), pp. 14-23. DOI: 10.32056/KOMAG2020.4.2
  • [20] Chiriță A.P., Popescu T.C., Popescu A.-M.C., Dincă R.-Ș., Marinescu A.D.: Research on the use of hydropneumatic accumulators in order to reduce the flow rate and pressure pulsations of oscillating hydraulic intensifiers. Mining Machines 2021. 39(4), pp. 37-46. DOI: 10.32056/KOMAG2021.4.4
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu „Społeczna odpowiedzialność nauki” - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2dbb692d-43b5-45c3-8b0b-f69e0a5e316c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.