PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimality conditions and duality for generalized fractional minimax programming involving locally Lipschitz (b,Ψ,Φ,ρ) -univex functions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we are concerned with optimality conditions and duality results of generalized fractional minimax programming problems. Sufficient optimality conditions are established for a class of nondifferentiable generalized fractional minimax programming problems, in which the involved functions are locally Lipschitz (b,Ψ,Φ,ρ)-univex. Subsequently, these optimality conditions are utilized as a basis for constructing various parametric and nonparametric duality models for this type of fractional programming problems and proving appropriate duality theorems.
Rocznik
Strony
5--32
Opis fizyczny
Bibliogr. 44 poz., rys., tab.
Twórcy
autor
  • Faculty of Mathematics and Computer Science, University of L ´od´z, Banacha 22, 90-238 Lodz, Poland
autor
  • Department of Mathematics, Institute of Science, Banaras Hindu University Varanasi-221005, India bhu
  • Department of Mathematics, Indian Institute of Technology Patna Bihta-801103, Bihar, India
Bibliografia
  • [1] Ahmad, I. (2003) Optimality conditions and duality in fractional minimax programming involving generalized ρ-invexity. International Journal of Management and System 19, 165-180.
  • [2] Ahmad, I. and Husain, Z. (2006) Optimality conditions and duality in nondifferentiable minimax fractional programming with generalized convexity. Journal of Optimization Theory and Applications 129, 255-275.
  • [3] Ahmed, A. (2004) Sufficiency in nondifferentiable fractional minimax programming. The Aligarh Bulletin of Mathematics 23, 117-122.
  • [4] Antczak, T. (2008) Generalized fractional minimax programming with B(p,r)-invexity. Computers and Mathematics with Applications 56, 15051525.
  • [5] Antczak, T. (2014) On nonsmooth (Φ,ρ)-invex multiobjective programming in finite-dimensional Euclidean spaces. Journal of Advances Mathematical Studies 7, 127-145.
  • [6] Antczak, T. and Stasiak, A. (2011) (Φ,ρ)-invexity in nonsmooth optimization. Numerical Functional Analysis and Optimization 32, 1-25.
  • [7] Bector, C.R., Chandra, S. and Bector, M.K. (1989) Generalized fractional programming duality: a parametric approach. Journal of Optimization Theory and Applications 60, 243-260.
  • [8] Bector, C.R., Chandra, S., Gupta, S. and Suneja, S.K. (1994) Univex sets, functions and univex nonlinear programming. In: Komolosi, S., Rapcsak, T. and Schaible, S. Generalized Convexity. Lecture Notes in Economics and Mathematical Systems, 405, Springer Verlag, Berlin.
  • [9] Bhatia, D. and Jain, P. (1994), Generalized (F,ρ)-convexity and duality for non smooth multi-objective programs. Optimization 31, 153-164.
  • [10] Chandra, S., Craven, B.D. and Mond, B. (1986) Generalized fractional programmingduality: a ratio game approach. Journal of Australian Mathematical Society Ser. B 28, 170-180.
  • [11] Chandra, S. and Kumar, V. (1995) Duality in fractional minimax programming. Journal of the Australian Mathematical Society 58, 376–386.
  • [12] Clarke, F.H. (1983) Optimization and Nonsmooth Analysis. A Wiley-Interscience Publication, John Wiley&Sons, Inc. Craven, B.D. (2010) Kinds of vector invex. Taiwanese Journal of Mathematics 14, 1925-1933.
  • [13] Hanson, M.A. and Mond, B. (1982) Further generalization of convexity in mathematical programming. Journal of Information and Optimization Science 3, 25-32.
  • [14] Ho, S.C. and Lai, H.C. (2012) Optimality and duality for nonsmooth minimax fractional programming problem with exponential (p,r)-invexity. Journal of Nonlinear and Convex Analysis 13, 433-447.
  • [15] Ho, S.C. and Lai, H.C. (2014) Mixed type duality for nonsmooth minimax fractional programming involving exponential (p;r)-invexity. Numerical Functional Analysis and Optimization 35, 1560-1578.
  • [16] Jayswal, A., Kumar, R. and Kumar, D. (2013) Minimax fractional programming problem involving nonsmooth generalized univex functions. International Journal of Control Theory and Applications 3, 7-22.
  • [17] Jeyakumar, V. (1988) Equivalence of saddle-points and optima, and duality for a class of nonsmooth non-convex problems. Journal of Mathematical Analysis and Applications 130, 334-343.
  • [18] Jeyakumar, V. and Mond, B. (1992) On generalized convex mathematical programming. Journal of Australian Mathematical Society Ser.B 34, 4353.
  • [19] Kim, D.S. and Schaible, S. (2004) Optimality and duality for invex nonsmooth multiobjective programming problems. Optimization 53, 165-176.
  • [20] Lee, G.M. (1994) Nonsmooth invexity in multiobjective programming. Journal of Information and Optimization Sciences 15, 127-136.
  • [21] Li, X.F., Dong, J.L. and Liu, Q.H. (1997) Lipschitz B-vex functions and nonsmooth programming. Journal of Optimization Theory and Applications 93, 557-574.
  • [22] Liang, Z.A. and Shi, Z.W. (2003) Optimality conditions and duality for a minimax fractional programming with generalized convexity. Journal of Mathematical Analysis and Applications 277, 474-488.
  • [23] Liu, J.C. (1996) Optimality and duality for generalized fractional programming involving nonsmooth (F,ρ)-convex functions. Computers and Mathematics with Applications 32, 91-102.
  • [24] Liu, J.C. (1996) Optimality and duality for generalized fractional programming involving nonsmooth pseudoinvex functions. Journal of Mathematical Analysis and Applications 202, 667-685.
  • [25] Liu, J.C. and Wu, C.S. (1998a) On minimax fractional optimality conditions with (F,ρ)-convex. Journal of Mathematical Analysis and Applications 219, 36-51.
  • [26] Liu, J.C. and Wu, C.S. (1998b) On minimax fractional optimality conditions with invexity. Journal of Mathematical Analysis and Applications 219, 21-35.
  • [27] Liu, J.C. Wu, C.S. and R.L. Sheu (1997) Duality for fractional mimimax programming. Optimization 41, 117-133.
  • [28] Mishra, S.K. (1997) Generalized fractional programming problems containing locally subdifferentiable ρ-univex functions. Optimization 41, 135-158.
  • [29] Mishra, S.K., Wang, S.Y., Lai, K.K. and Shi, J.M. (2003) Nondifferentiable minimax fractional programming under generalized univexity. Journal of Computational and Applied Mathematics 158, 379-395.
  • [30] Mishra, S.K., Wang, S.Y. and Lai, K.K. (2008) On nonsmooth α-invex functions and vector variational-like inequality. Optimization Letters 2, 91–98.
  • [31] Mishra, S.K. and Upadhyay, B.B. (2014) Nonsmooth minimax fractional involving η-pseudolinear functions. Optimization 63, 775–788.
  • [32] Mond, B. and Weir, T. (1981) Generalized concavity and duality. in: Schaible, S. and Ziemba, W.T. (eds.) Generalized Concavity in Optimization and Economics. Academic Press, New York.
  • [33] Mukherjee, R.N. and Purnachandra Rao, Ch. (1996) Generalized Fconvexity and its classification. Indian Journal of Pure and Applications Mathematics 27, 1175-1183.
  • [34] Reiland, T.W. (1990) Nonsmooth invexity. Bulletin of the Australian Mathematical Society 42, 437-446.
  • [35] Schaible, S. (1976) Fractional programming I, Duality. Management Science 22, 858-867.
  • [36] Stancu-Minasian, I.M. (1999) A fifth bibliography of fractional programming. Optimization 45, 343-367.
  • [37] Suneja, S.K. and Lalitha, C.S. (1993) Multiobjective fractional programming involving ρ-invex and related functions. Opsearch 30, 1-14.
  • [38] Upadhyay, B.B. and Mishra, S.K. (2015) Nonsmooth semi-infinite minimax programming involving generalized (φ,ρ)-invexity. Journal of Systems Science and Complexity 28, 857–875.
  • [39] Weir, T. (1986) A dual for multiobjective fractional programming. Journal of Information and Optimization Science 7, 261-269.
  • [40] Weir, T. (1986) A duality theorem for a multiobjective fractional optimization problem. Bulletin of Australian Mathematical Society 34, 376-386.
  • [41] Vial, J.P. (1983) Strong and weak convexity of sets and functions. Mathematics of Operation Research 8, 231-259.
  • [42] Yang, X.M. and Hou, S.H (2005) On minimax fractional optimality and duality with generalized convexity. Journal of Global Optimization 31, 235-252.
  • [43] Zalmai, G.J. (1995) Optimality conditions and duality models for generalized fractional programming problems containing locally subdifferentiable and ρ-convex functions. Optimization 32, 95-124.
  • [44] Zalmai, G.J. (2007) Parametric duality models for discrete minmax fractional programming problems containing generalized (θ,η,ρ)-V - invex functions and arbitrary norms. Journal of Applied Mathematics & Computing 24, 105-126.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2db8ffdc-50d6-438a-aa57-5aadad0b7958
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.