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1. Introduction

Testing statistical hypotheses is one of the most important parts of 
statistical inference. On the other hand it can be regarded as a part of 
the decision theory. In the decision theory we assume that decisions 
(actions belonging to a certain action space) should depend upon a 
certain state which is uncontrollable and unknown for a decision mak-
er. We usually assume that unknown states are generated by random 
mechanisms. However, all we could know about these mechanisms 

is their description in terms of the probability distribution Pθ  that 
belongs to a family of distributions Pθ θ: ∈{ }Θ  indexed by a param-
eter θ (one or multidimensional). In such a case a state space is often 
understood as equivalent to the parameter space Θ . If we knew the 
true value of θ we would be able to take a correct decision. The choice 
of an appropriate decision depends upon a value of a certain utility 
function that has to be defined on the product of the action space and 
the state space. If we had known the unknown state we would have 
been able to choose the most preferred action looking for the action 
with the highest value of the assigned utility. In practice, we define the 
expected reward (or the loss) associated with the given action for the 

given state θ ∈Θ , and then we define the utility u U∈ that ‘measures’ 
the preference the decision maker assigns to that reward (loss).

In the Bayesian setting of the decision theory we assume that there 
exists prior information about the true state, and that this information 
is expressed in terms of the probability distribution π θ( )  defined on 
the parameter space Θ . By doing this we identify each action with 
probability distribution on a set of possible utilities U. According to 
the Bayesian decisions paradigm we choose the action with the high-
est value of the expected utility, where expectation is calculated with 
respect to the probability distribution defined on U. 

When a decision maker has an opportunity to observe a random 
variable (or a random vector) X that is related to the state θ, such an 
observation provides him additional information which may be help-
ful in making proper decisions. In such a case the decision problem is 
called the statistical decision problem. Comprehensive presentation of 
the Bayesian decision theory is given in a classical textbook of Raiffa 
and Schleifer [24], and the Bayesian approach to statistical decision 
problems may be found in DeGroot [5].

In the statistical decision theory we deal with many quantities 
which may be vague and imprecise. First, our observation may be 
imprecise, described in linguistic terms. In such a case we deal with 
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imprecise (fuzzy) statistical data. Many books and papers have been 
written on the statistical analysis of fuzzy data. Classical problems 
of statistical decisions with fuzzy data have been discussed, e.g., in 
the paper by Grzegorzewski and Hryniewicz [13]. More general ap-
proaches, referring to different concepts of fuzzy randomness, are 
presented in an overview paper by Gil and Hryniewicz [11].  First 
results presenting the Bayesian decision analysis for imprecise data 
were given in papers by Casals et al. [2, 3]. In these papers the authors 
described fuzzy observations using the notion of the fuzzy informa-
tion system introduced by Zadeh [29] and Tanaka et al. [26]. Other 
approach, based on the concept of imprecise numbers, has been pro-
posed by Viertl [27]. Further results concerning the decisions based 
on fuzzy statistical information have been published by Casals [1] and 
Gil and Lopez-Diaz [12]. Imprecise information about the parameters 
of the prior distribution have been considered in Hryniewicz [14] and 
Frühwirth-Schnatter [10]. In the statistical decision theory we may 
also face practical problems when verified hypotheses are imprecise. 
This problem was considered by Delgado et al. [6] and by Casals [1]. 
Finally, the loss function (or the utility function) may be expressed 
in a fuzzy way, as in the paper by Gil and Lopez-Diaz [12]. Original 
results on Bayes fuzzy hypotheses testing have been also presented 
by Taheri and Behboodian [25] who proposed another approach using 
the posterior odds ratio as the criterion for  decision making.

The crucial problem of the fuzzy approach to the Bayes statisti-
cal decision analysis is to compare fuzzy risks related to considered 
decisions. This problem arises from the fact that fuzzy numbers that 
describe fuzzy risks are not naturally ordered. Thus, the decisions de-
pend upon the method used for such an ordering. Theory of possibil-
ity, introduced by Zadeh [29], and based on the fuzzy logic, provides 
tools for making decisions in the fuzzy environment. We propose to 
use the possibilistic Necessity of Strict Dominance Index (NSD) in-
troduced by Dubois and Prade [8]. Theoretical results are presented in 
the second, third and fourth sections of the paper. The fifth section is 
devoted to the application of the proposed methodology for the case 
of reliability data described by the Weibull distribution.

2. Calculation of the Bayes risks in crisp environment

In the Bayesian approach to statistical decisions we take into con-
sideration potential losses and rewards associated with each consid-
ered decision. Let θ ∈Θ  be a parameter describing an element of the 
state space, and δ ∈ ∆  be a decision (action) from a space of possible 
(admissible) decisions. In the general case of making decisions we 

usually define a utility function u θ δ,( )  which assigns a certain util-
ity u U∈  to the decision δ which describes a decision maker's level 
of preference for the decision δ if the true state is described by θ. 

However, in statistical decisions we rather consider the loss l θ δ,( )  
assigned to decision δ if the true state is described by θ.

Assume now that the decision maker knows the likelihood func-
tion L L x xnx | , , |θ θ( ) = ( )1   that summarizes the observations of a 

random sample ( )1, , nX X
. Moreover, we assume that the decision 

maker has some prior information about possible values of θ. This 
information, according to the Bayes decision theory is represented by 

the prior probability distribution π θ( ) . This information is merged 
with the information yielded by the random sample. The updated in-
formation about the true value of the  state θ  is calculated using the 
Bayes theorem, and expressed in the form of the posterior probability 
distribution:
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where ( )1, , nx x=x  , and gn x |θ( )  is the non-normalised posterior 
distribution. Further analysis is performed in exactly the same way 
with the posterior probability distribution g θ | x( )  replacing the prior 

probability distribution π θ( ) . 

Let δ δx( ) = ( )x xn1, ,
 be a decision function which is used for 

choosing an appropriate decision for given sample values ( )1, , nx x . 
The risk function, interpreted as an expected loss incurred by the deci-
sion δ, is calculated as:

	 ρ δ θ δ θ π θ θ( ) = ( )( ) ( ) ( )∫∫ l x x f x x d dn
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x .     (2)

Let ∆ be the space of possible decision functions. Function δ ∗  
that fulfils the following condition:

	 ρ δ ρ δδ
∗

∈( ) = ( )inf ∆ 	 (3)

we call the Bayes decision function, and the corresponding risk ρ δ ∗( )  

we call the Bayes risk. Statistical decisions with the risk equal to the 
Bayes risk are called optimal. In this paper we restrict ourselves to a 
particular problem of the Bayes decisions, namely to the Bayes test of 

statistical hypothesis H0 0:θ ∈Θ  against the alternative hypothesis 

H1 1:θ ∈Θ , where 0Θ and 1Θ  are the subsets of the state space Θ 

such that 0 1Θ Θ = ∅ . Let us define two functions:
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Now, let us define loss functions:

	 u a a Hθ θ θ, 0 01( ) = ( ) − ( )  	 (5)

that describes the loss related to the acceptance of H0 , and

	 u a b Hθ θ θ, 1 11( ) = ( ) − ( )  	 (6)

that describes the loss related to the acceptance of H1. Functions 

a θ( )  and b θ( )  are two arbitrary nonnegative functions. In such a 
case we may consider only two risks: the risk of accepting H1 when 
H0 is true given by:

	 R u a g d1 1
1

= ( ) ( )∫ θ θ θ, | x
Θ

,	 (7)

and the risk of accepting H0 when H1 is true given by:

	 R u a g d0 0
0

= ( ) ( )∫ θ θ θ, | x
Θ .	 (8)

In the following section we present methods for the computation 
of such a risk in different cases representing situations when different 
parts of the decision model are described in an imprecise way.
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3. Bayes risks for fuzzy statistical data and fuzzy prior 
information

Let us consider situation when available statistical data are vague 
and are described by fuzzy random variables. The notion of a fuzzy 
random variable has been defined by many authors in a different way. 
One of these definitions, attributed to Kwakernaak [20,21] and – inde-
pendently – Kruse (see, e.g. Kruse and Meyer [19] for more informa-

tion),  considers the fuzzy random variable X  as a fuzzy (vague) 
perception of an unknown ordinary random variable :X RΩ → , 

called an original of X . In the presence of fuzzy statistical data the 
posterior distribution of the state variable θ  can be obtained by the 
application of Zadeh's extension principle to (1). Let  
  

x x x i ni i L i U
α α α= ( ) =, ,, , , ,1  be the α-cuts of the fuzzy observations 

1, , nx x 
 . Following Frühwirth-Schnatter [10] let’s denote by C x( )α  

the α-cut of the fuzzy sample which is equal to the Cartesian product 
of the α-cuts 


x xn1

α α, , . Frühwirth-Schnatter [10] also proposed a 

generalization of the fuzzy risk model by allowing fuzziness in the 
description of the prior information. In such case the probability den-

sity function π θ ,ηη( )  that describes the prior knowledge about the 

values of the state variable θ may be described as the function of fuzzy 

parameters ηη  denoted by π θ , ηη( ) . Let us denote α-cut of the fuzzy 

vector ηη  by C ηη( )α . Thus, the α-contours of the fuzzy posterior 

probability density are now given by (see [10]):
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where n θ ,ηη( )  is a normalizing constant. Having these α-contours we 
can the general methodology for integrating fuzzy functions presented 
in Dubois and Prade [7] compute the membership functions of fuz-

zy risks 0R  and 1R . Let us denote by C R R Rh h
L

h
L

  ( ) = ( )α
α α, ,,   the 

α-cuts of the fuzzy risks , 0,1hR h = . The lower and upper bounds of 
these α-cuts  are now calculated from the following formulae:
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The knowledge of these α-cuts is thus equivalent to the knowl-

edge of the membership functions of fuzzy risks 0R  and 1R , respec-
tively. Further generalization may be achieved by assuming a vague 
character of utilities (losses). The procedure for finding the α-cuts of 

0R  and 1R  is similar, and described in Hryniewicz [15]. 
Some authors (see, e.g., Viertl [27]) consider lower and upper en-

velopes for prior and posterior densities. However, such envelopes do 
not have probabilistic interpretation, as they do not integrate to one 
(only to “approximately one”, as it was stated in Viertl and Hareter 

[28]. This, unacceptable for many researchers, feature is the conse-
quence of a fact that probability density functions cannot be ordered 
(in contrast to, e.g., cumulative probability functions, expected val-
ues, etc.), and the choice of their „lower” or „upper” representatives 
requires some additional assumptions. Therefore, the further usage of 
these envelopes in the Bayesian analysis seems to be debatable.

4. Bayes risks in case of fuzzy statistical hypotheses

In this subsection we present a method proposed in Hryniewicz 
[15] for the computation of fuzzy risks related to the test of the fuzzy 
hypothesis 0H  against a fuzzy alternative 1H . First, let us suppose 
that all remaining information (i.e. statistical data, prior information, 
and loss functions) are crisp.

Let  H hh h: , ,θ ∈ =Θ 0 1 be considered fuzzy statistical hypothe-

ses, where , 0,1h hΘ =  are the fuzzy sets described by their member-

ship functions µ θΘh ( ) . To simplify the problem let us assume that 

each fuzzy set hΘ  may be presented in a form of a fuzzy interval 

( ), ,,L h U hΘ Θ  , where fuzzy sets ,L hΘ  and ,U hΘ  have the  α-cuts 
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,α α≤ .   Denote the membership functions of  ,L hΘ  and ,U hΘ  

as µL h,  and µU h, , respectively. Using the notation of Dubois and 

Prade [7] we may write the membership functions of the fuzzy risks 

, 0,1h h =R  as:
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Finally, let us consider the most general case when we deal with 
fuzzy statistical data, fuzzy prior information, fuzzy loss function, and 
fuzzy statistical hypotheses. In this case the fuzzy risks , 0,1h h =R   

are given as an integrals over fuzzy sets from fuzzy functions, i.e.

	 
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Such a fuzzy integral is practically impossible to calculate. However, 
Hryniewicz [15] proposed its reasonable approximation form above 
using the following formulae:
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When only two hypotheses are considered we have to deal with a re-
latively simple problem of comparing two fuzzy numbers 0R  and 1R  . 
For doing this comparison Hryniewicz [15] proposed a possibilistic 
approach introduced by Dubois and Prade [8]. To compare these fuzzy 
risks he proposed to use the concept of the Necessity of Strict Domi-
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nance Index (NSD) and Possibility of Dominance Index (PD). The PD 

index is defined for two fuzzy sets A  and B  as:

	 PD Poss A B x yx y x y A B= ≥( ) = ( ) ( ){ }≥
  sup min ,, : µ µ ,	 (17)

where µA x( )  and µB y( )  are the membership functions of A  and 

B , respectively. PD is the measure for a possibility that the set A  is 

not dominated by the set B . The NSD index is defined as:

	 NSD Ness A B x yx y x y A B= >( ) = − ( ) ( ){ }≤
  1 sup min ,, : µ µ .   (18)

NSD represents necessity that the set A  dominates the set B . If 
NSD>0 there exists a strong indication of the acceptance of one hypo-

thesis (say A ) over another one (say B ).
Possibilistic indices mentioned above can be used in the evalua-

tion of the undertaken decision in terms of preferences. Cutello and 
Montero [4] proposed three measures of preference relations. Let  be 

the measure of indifference between alternatives x and y, µB x y,( )  
be the measure that the alternative x is better than the alternative y, 

µW x y,( )  be the measure that the alternative x is worse than the al-
ternative y. Hryniewicz [15] has noted that in the context of statistical 
decisions we have the following relations:

	 µI x y PD NSD,( ) = − 	 (19)

	 µB x y NSD,( ) = 	 (20)

	
µW x y PD,( ) = −1 .

	 (21)

In the next section we show a simple example of this methodology 
for the case of the lifetime data described by the Weibull distribution.

5. Testing hypotheses for the Weibull distribution using 
imprecise information

Let X be the random variable describing lifetime data. The Weibull 
distribution, defined by the probability density function (pdf):

	 f x s sx
x

x s
s

s
| ,

exp
, , ,γ

γ γ
γ( ) =

( )
> > >

−1
0 0 0 	 (22)

is frequently used for modeling such data. The parameter s deter-
mines the shape of the pdf function, and the parameter γ determines 
the spread of variability of X. Because of its great applicability in 
the analysis of reliability (or survival, in a more general setting) clas-
sical (non-Bayesian) methods of statistical analysis for the Weibull 
distribution have been developed by many authors. For more detailed 
information the reader can be directed to many textbooks, such as 
e.g. the book by Lawless [22]. The number of papers devoted to the 
problem of the Bayesian analysis of the lifetime data described by the 
Weibull distribution is not so high because of difficulties with find-
ing analytical solutions. Comprehensive bibliography of the problem 
together can be found in the recent paper by Fernández [9]. The rea-

son of these problems stems from the fact that the bivariate conjugate 
prior distribution for both parameters of the Weibull distribution does 
not exist. Therefore, indirect methods, such as the method proposed 
by Kaminskiy and Krivtsov [17], have to be used.

The problem of the statistical analysis of data described by the 
Weibull distribution becomes much easier if the value of the shape 
parameter is s known. In such case the random variable sY X=  is 
distributed exponentially with the scale parameter equal to γ. Statisti-
cal analysis of lifetime data described by the exponential distribution 
is well developed, both in the classical (non-Bayesian) and Bayesian 
sense. For example, in the case of Bayesian there exists the conjugate 
prior probability distribution for the scale parameter γ. This is the in-
verted gamma distribution defined by the following pdf function:

	 g y
a a

b
a b

b

b( ) =
−( )

( )
> > >+

exp
, , , .

γ

γ
γ

Γ 1 0 0 0 	 (23)

Note, that the prior distribution for the inverse of the scale distribu-
tion λ γ= 1  is the well known gamma distribution with the same 
parameters a and b, respectively. Moreover, in case of the exponen-
tial distribution there exists sufficient statistic that summarizes avail-
able statistical data. For example in case of type-II censoring this 
statistic is given by w y r( )( ), , where w y y n r yi ri

r( ) = + −( )( ) ( )=∑ 1  , 

and ( ) ( ) ( )1 2 ry y y≤ ≤ ≤
. The posterior distribution of γ is also 

the inverted gamma distribution with parameters ( )a a w y′ = +  and 
b b r′ = + .

Now let’s consider the case that we have only partial knowledge 
about the value of the shape parameter s. Formal description of par-
tial knowledge is still the subject of controversies. Some researchers 
claim that classical probabilities are sufficient in this case. However, 
many other researchers present counterexamples showing that some 
other methods, like imprecise probabilities, Dempster-Shafer belief 
functions, p-boxes, possibility distributions etc., should be used in 
order to capture the essence of partial knowledge. In this paper we 
assume that our knowledge about the value of s is described by a pos-
sibility distribution, which from a formal point of view is equivalent 
to the membership function µ s( )  of a fuzzy number s . Thus, we as-
sume that we analyze a fuzzy random variable defined as:

	 sY X= 

 ,	 (24)

and the sample information is presented as the fuzzy number:

	   w y y n r yi ri
r( ) = + −( )( ) ( )=∑ 1 .	 (25)

Therefore, all results of statistical analyses, either Bayesian or non-
Bayesian, will be presented using terms related to fuzzy sets.

Let us consider the problem of the Bayesian estimation of the pa-
rameter γ in case of type-II censored lifetime data. As natural Bayesian 
estimators can be considered such statistics like the mode of the pos-
terior distribution or its median. In case of the known s it can be done 
by solving nonlinear equations (see [9]). However, when we have 
fuzzy data in the form of ( )w y  this task is rather difficult to do. Much 
simpler result can be obtained when we use a decision-theoretic ap-
proach. When the losses due to erroneous estimation are proportional 
to γ γB −( )2  then the optimal estimator that minimizes the Bayesian 
risk is equal to the expected value in the posterior distribution, and in 
the case of fuzzy data is given by a very simple formula:
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



γ B
a w y
b r

b r=
+ ( )
+ −

+ >
1

1, . 	 (26)

The membership function of γ B  is similar to the membership func-
tion of ( )w y , except for a linear transformation of the x-axis.

Acquisition of the parameters of the prior distribution is the most 
important practical problem of the Bayesian approach to statistics. 
Usually, an expert proposes his/hers evaluations of the moments of 
the prior distribution, and these values are set equal to their theoretical 
counterparts, forming equations the parameters of the prior distribu-
tion are calculated from. Implementation of this practice in the consid-
ered case is rather questionable, as the parameter γ does not have any 
direct interpretation. Therefore such equations should be constructed 
using information that is directly related to observed lifetimes or other 
reliability indices.

The first two moments of the prior distribution of  reliability char-
acteristics, such as the reliability function R(t) or the hazard function 
h(t)=ht, are sometimes recommended for setting the parameters of the 
prior distribution. In the case of the hazard function ht  Fernández [9] 
shows that the expected value of the prior distribution of this index is 

given by [ ] 1 /s
tE E h sbt a−= = , and its variance is given by 

[ ] 2 2 21 2/s
tV V h s bt a−= = . By solving these two equations we can 

easily find closed formulae for the calculation of a and b:

	 ( ) 1s Ea a s st
V

−= = 	 (27)

	
2Eb

V
= .	 (28)

Hence, the Bayes estimator of γ is given as:

	 γ s
a s x n r x
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s
r

s
i
r

( ) =
( ) + + −( )

+ −
( ) ( )=∑ 1

1
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However, in the considered case of the fuzzy information about the 
value of s the Bayes estimator of γ  will be described by (29) with s 
replaced by fuzzy s .

Let s sL U
α α,( )  be the α-cut of the fuzzy variable s  that represents 

imprecise information about the value of the shape parameter s. We 
can find the limiting values of the α-cut of the Bayesian estimator of 
the parameter γ by solving the following optimization problems:

	 γ γα
α αB L s s sL U

s, ,
inf= ( )

∈( ) 	 (30)

	 γ γα
α αB U s s sL U

s, ,
sup= ( )

∈( ) .	 (31)

Unfortunately, γ s( )  is not a monotonic function of s. However, for 
consistent possible values of s (either not greater than one or not 
smaller than one), and usually observed values of x’s (smaller than 
the expected value) γ s( )  is monotonic. Thus, finding the limiting 

values according to (27) and (28) does not require special computa-
tional efforts.

In a similar, but more complicated, way one can calculated fuzzy 
risks related to statistical hypotheses about γ and its different func-
tions such as reliability function or hazard rate. For example, consider 
the important from a practical point of view characteristics such as the 
reliable life tR, defined as:

	 t RR s= −( )γ ln
1

,	 (32)

where R is a specified fraction of survived objects. The Bayes estima-
tor of tR in the case of the gamma prior distribution for λ γ= 1  with 
the scale parameter 0 1a a=  and the shape parameter 0b b= , is given 
in Martz and Waller[23] as follows:

	 t
b r s R

b r a a w y
R B

s

s
,

ln
=

+ −( ) −( )

+( ) ( ) +( ) 

Γ

Γ

0
1

0 0 0
1

1

1
.	 (33)

Taking into account the imprecise information about the shape pa-
rameter s, and hence, the imprecise values of the parameter a, the 
limiting values of the α-cut of the fuzzy Bayes estimate of the reliable 
life are given by the formulae:

t
b r s R

b r
a s

a
R B L

s s s

s s

L U
, ,

,
inf

ln
α

α α
=

+ −( ) −( )
+( )

( ) 
∈( ) −

Γ

Γ

1 1 1

1 ss x n r xi
s

r
s

i
r s( ) + −( )( ) +



( ) ( )=∑ 1

1
1

,

(33)

t
b r s R

b r
a s

a
R B U

s s s

s s

L U

, ,
,
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ln

α

α α
=

+ −( ) −( )
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( ) 

∈( ) −

Γ

Γ

1 1 1

1 ss x n r xi
s

r
s

i
r s( ) + −( )( ) +



( ) ( )=∑ 1

1
1

.

(34)

These values can be computed only numerically using widely accessi-
ble routines for finding minima and maxima of continuous functions.

Knowing the fuzzy Bayes estimates of reliability characteristics 
we can relatively easily find the fuzzy Bayes confidence intervals for 
these characteristics. In order to do so we have to replace in the re-
spective formulae, that can be found e.g. in the book by Martz and 
Waller [23], the values of the non-fuzzy estimator with the respec-
tive limiting values of the α-cuts: the lower value of the α-cut in the 
formula for the lower limit of the Bayes confidence interval, and the 
upper of the α-cut in the formula for the upper limit of the Bayes con-
fidence interval. For the known value of s the limits of the confidence 
intervals are given by the following formulae:

	 t R
a s r b

a s x n r x
R B s

i
s

r
s

i
, lnγ
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( ) +( )
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−
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2
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2 2
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
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

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

, (35)

t R
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a s x n r x
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,  (36)



Eksploatacja i Niezawodnosc – Maintenance and Reliability Vol.17, No. 4, 2015 615

Science and Technology

where χβ
2 k( )  is the quantile of order β from the chi-square distribu-

tion with k degrees of freedom. When the shape parameter s is fuzzy 
the Bayes confidence interval defined by the limiting values (35) and 
(36) also becomes fuzzy. Its α-cut is in this case defined by the fol-
lowing limiting values:

	 t tR B s s s R B
L U

, , ,infα γ γα α( ) = ( )
∈( ) ,	 (37)

	 t tR B s s s R B
L U

, , ,supα γ γα α( ) = ( )
∈( ) .	 (38)

The nested α-cuts (for all α ∈( ]0 1, ) may be regarded as the possibil-
ity distribution of the fuzzy Bayes reliable life ,R Bt . Then, we can use 

the possibilistic methodology described in the fourth section of this 
paper to compare the fuzzy limits of the Bayes confidence intervals 
with the reliability requirements for tR.

6. Conclusions

Statistical methods that use the Bayes approach for the analysis 
of data are of special importance in the theory and practice of reli-
ability. Because of high reliability of contemporary systems and their 

elements it is difficult to collect enough data for precise estimation 
of reliability characteristics using classical statistical methods. There-
fore, it is necessary to utilize additional information represented in the 
form of prior distributions of parameters of the probability distribu-
tion of life times. However, it is usually difficult to represent our prior 
knowledge in a fully precise way. Moreover, the statistical data may 
be also reported imprecisely. Thus, we should have the methodology 
for combining random uncertainty with non-random (fuzzy) impreci-
sion in the context of the Bayes reliability analysis. In this paper we 
have presented a possibilistic approach for making decisions in the 
case of the fuzzy Bayes reliability analysis.

The results obtained in this paper for the case of the Weibull distri-
bution can be applied not only in the context of reliability. This prob-
ability distribution is used for the description of extreme events, and 
has been also applied in the analysis of some environmental phenom-
ena. In that particular context the combination of imperfectly reported 
data with imprecise opinions provided by experts is of great practical 
importance. Therefore, the results presented in this paper can be ap-
plied also in this area.
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