PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Increasing Effectiveness of Heavy Metal Sorption by Biosorbent Microalgae Beads

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This research was conducted to overcome the Cu2+ heavy metal pollution in the environment through a biotechnological approach with heavy metal sorption process by microalgae beads. Biosorbent in form of beads was produced from Chlorella sorokiniana, Monoraphidium sp., and Scenedesmus obliquus tropical microalgae mobilized with Naalginate polymer. The sorption process is observed on a controlled batch culture with variations of temperature (25, 35, and 45 °C), and observation periods (200th, 220th, 250th, 270th min) as contact time. The absorption efficiency on each temperature variation reaches more than 90%, but the highest absorption efficiency rate is at 92.20% on 35 °C temperature and 200 minutes of contact time. Biosorbent beads with 2–3 mm of diameters show the best sorption ability than the 3–4 mm and 4–5 mm ones. Sorption process is also evident with the existence of intensity alteration on amide, ketone, and sulfhydryl function groups which were consistently weakened until the end of the sorption process. The beads utilized in this research are potentially reusable as biosorbent. Thus, further examination is required to acknowledge the maximum reutilization rate of the beads as biosorbent on heavy metal absorption process.
Słowa kluczowe
Rocznik
Strony
50--57
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
  • Environmental Engineering Department, Faculty of Landscape Architecture and Environmental Technology, Universitas Trisakti, Jakarta, Indonesia
  • Environmental Engineering Department, Faculty of Landscape Architecture and Environmental Technology, Universitas Trisakti, Jakarta, Indonesia
  • Environmental Engineering Department, Faculty of Landscape Architecture and Environmental Technology, Universitas Trisakti, Jakarta, Indonesia
  • Environmental Engineering Department, Faculty of Landscape Architecture and Environmental Technology, Universitas Trisakti, Jakarta, Indonesia
  • Magister Management, Faculty of Economics and Business, Universitas Trisakti, Jakarta, Indonesia
Bibliografia
  • 1. Abbas, S.H., Ismail I.M., Mostafa T.M., Solaymon A.H. 2014. Biosorption of heavy metals: A review. Journal of Chemical Science and Technology, 3, 74–102.
  • 2. Al-Homaidan, A.A., Al-Houri H.J., Al-Hazzani A.A., Elgaaly G., Moubayed N.M.S. 2014. Biosorption of copper ions from aqueous solutions by spirulina platensis biomass. Arabian Journal of Chemistry, 7, 57–62.
  • 3. Ameri, M., Soltani., N., Baftechi, L., Bolfion, M., Javadi, S.M., Jalali, G., Dezfulian M., Bagheri B. 2019. Adsorptive removal of heavy metals by microalgae. Journal of Phycological Research, 3(1), 326–336.
  • 4. Daneshvar, E., Vazirzadeh, A., Niazi, A., Kousha, M., Naushad, M., Bhatnagar, A. 2017. Desorption of methylene blue dye from brown macroalga: Effect of operating parameters, isotherm study and kinetic modelling. Journal of Cleaner Production, 152, 443–453.
  • 5. Edmundson, S.J., Huesemann, M.H. 2015. The dark side of algae cultivation: Characterizing night biomass loss in three photosynthetic algae, Chlorella Sorokiniana, Nannochloropsis Salina and Picochlorum sp. Algal Research, 12(C), 470–476.
  • 6. Gracia, E.S., Lo, C., Eppink, M.H.M, Wijiffels, R.H., Berg, C.V.D. 2019. Understanding mild cell disintegration of microalgae in bead mills for the release of biomolecules. Chemical Engineering Science, 203(2019), 380–390.
  • 7. Ilamathi, R, Nirmala, G.S., Muruganandam, L. 2014. Heavy metals biosorption in liquid solid fluidized bed by immobilized consortia in alginate beads. Journal of Bioprocessing and Biotechniques, 6, 652–662.
  • 8. Ivánová D., Horváthová H., Kaduková J., Kavuličová J. 2010. Stability of immobilized biosorbents and its influence on biosorption of copper. Nova Biotechnologica, 10, 45–51.
  • 9. Kumar, M., Singh, A.K., Sikandar, M. 2018. Study of Sorption and Desorption of Cd(II) from aqueous solution using isolated green algae Chlorella vulgaris. Applied Water Science, 8, 1–11.
  • 10. Liu, Y.G.,. Liao, T., He, Z., Li, T., Wang, H., Hu X., Guo, Y., He, Y. 2013. Biosorption of Copper (II) from aqueous solution by bacillus subtilis cells immobilized into chitosan beads. Transactions onf Nonferrous Metals Society of China, 23(6), 1804–1814.
  • 11. Montalescot, V., Rinaldi, T., Touchard, R., Jubeau, S., Frappart, M., Jaouen, P., Bourseau, P. 2015. Optimization of bead milling parameters for the cell disruption of microalgae: process modeling and application to Porphyridium cruentum and Nannochloropsis oculata. Bioresource Technology, 196, 339–346.
  • 12. Nafie, Nursiah La, P. Taba, A. Irawati, C. Rosdiati. 2010. Biosorption of Pb (II) metal ions using seagrass biomass thalassia hemprichii found on barrang lompo island. Jurnal Tiga Bahasa, Marina Chimica Acta,11, 1411–2132.
  • 13. Postma, P.R., Miron, T.L., Olivieri, G., Barbosa, M.J., Wijffels, R.H., Eppink, M.H.M., 2015. Mild disintegration of the green microalgae Chlorella vulgaris using bead milling. Bioresource Technology, 184, 297–304.
  • 14. Pratiwi, R., Prinajati, P.S.D. 2018. Adsorption for lead removal by chitosan from shrimp shells. Indonesian Journal of Urban and Environmental Technology, 2, 35–46.
  • 15. Provasoli, L., dan Pintner, I.J. 1959. Artificial media for freshwater algae: Problems and suggestions in the ecology of algae. Tryon, C.A. & Hartman, R.T. Ed. University Pittsburgh, United State.
  • 16. Redha, A.A. 2020. Removal of heavy metals from aquaeous media by biosorption. Arab Journal of Basic and Applied Sciences, 27, 183–193.
  • 17. Rinanti, A., Fachrul, M.F., Hadisoebroto, R., Silalahi, M. 2017. Improving Biosorption of Cu (II)-Ion artificial wastewater by immobilized biosorbent of tropical microalgae. Japan: International Journal of Geomate, 13, 6–10.
  • 18. Rinanti, M.F., Fachrul, R. Hadisoebroto. 2018. Biosorption of Cu (II) by Scenedesmus obliquus: Kinetics adsorpption study and optimization in pH-contact time. Internasional Journal of Geomate, 15(52), 45–52.
  • 19. Siwi, W.P, Rinanti, A., Silalahi, M.D.S., Hadiesoebroto, R., Fachrul, M.F. 2017. Effect of immobilized biosorbents on the heavy metals (Cu2+) biosorption with variations of temperature and initial concentration of waste. In Proceedings of the The 4th International Seminar on Sustainable Urban Development, 012113.
  • 20. Wyk, C.S. Van. 2011. Removal of heavy metals from metal-containing effluent by yeast biomass. African Journal of Biotechnology, 10, 11557–11561.
  • 21. Zhang, Helan. 2014. Biosorption of heavy metals from aquaoeus solutions using keratin biomaterials. Doctoral Thesis, Universitat Autonoma de Barcelona, Spain.
  • 22. Zhang, X., Wang, X. 2015. Adsorption and desorption of nickel (II) ions from aqueous solution by a Lignocellulose/Montmorillonite Nanocomposite. Plos One, 10, 1–21.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2db77a69-c3f2-4d7e-8fff-a85cde46c055
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.