PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The mechanism of phosphate bacteria in increasing the solubility of phosphorus in Indonesian Andisols

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The purpose of this research was to determine: 1) phosphate bacteria (PB) mechanisms responsible for enhancing the soil’s soluble phosphorus (P), using the processes of inorganic P solubilisation, organic P mineralization, and blocking of soil colloidal adsorption site, and 2) to investigate the factors contributing to this increase. Phosphate bacteria (PB) was inoculated into sterile Andisols in three separate compositions, termed 1 kg P∙kg–1 (2.82 g phosphate rock, 0.5 g Ca3(PO4)2, 0.4 g Al3(PO4)2, or 0.4 g Fe3(PO4)2), organic P (0.5 cm3 para-Nitrophenylphosphate (pNPP) or 0.5 g Na-phytate), and 1 kg P (KH2PO4)∙kg–1, in order to analyse inorganic P solubilisation, organic P mineralization, and evaluate blocking soil colloidal site for adsorption P, respectively. Furthermore, spectrophotometry technique was applied to determine the amount of dissolved P. The PB showed an improvement in inorganic P solubilisation from 147.66 to 194.61 mg P∙kg–1, and also in organic P from 63.6 to 91.7 mg P∙kg–1, compared to control, (31.06 mg P∙kg–1) and (23.7 mg P∙kg–1), respectively. Meanwhile, the micro-organisms were known to decrease P adsorption by 13.43%, beyond the restraint set at 85.34%. Therefore, increased soluble P in Andisols is possibly expressed, using the equation as follows: soluble P (mg P∙kg–1) = 1201.96 + 1.18 inorganic P solubilisation (mg P∙kg–1) + 1.09 organic P mineralization (mg P∙kg–1) – 0.92 adsorption P (mg P∙kg–1) (R2 = 0.99).
Wydawca
Rocznik
Tom
Strony
188--194
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
autor
  • Jenderal Soedirman University, Faculty of Agriculture, Agrotechnology Department, dr. Soeparno Street Purwokerto 53123, Central of Java, Indonesia
autor
  • Gadjah Mada University, Faculty of Agriculture, Soil Science Department, Flora Street Bulaksumur 55281, Yogyakarta, Indonesia
autor
  • Gadjah Mada University, Faculty of Agriculture, Soil Science Department, Flora Street Bulaksumur 55281, Yogyakarta, Indonesia
autor
  • Gadjah Mada University, Faculty of Agriculture, Soil Science Department, Flora Street Bulaksumur 55281, Yogyakarta, Indonesia
Bibliografia
  • AHMED M.F., KENNEDY I.R., CHOUDHURY A.T.M.A., KECSKE´S M.L., DEAKER R. 2008. Phosphorus adsorption in some Australian soils and influence of bacteria on the deadsorption of phosphorus. Communication in Soil Science and Plant Analysis. Vol. 39 p. 1269–1294. DOI 10.1080/0010362080 2003963.
  • CASTAGNO L.N., ESTRELLA M.J., SANNAZARRO A.I., GRASSANO A.E., RUIZ Q.A. 2011. Phosphate-solubilization mechanism and in vitro plant growth promoting activity mediated by Pantoea eucalypti isolated from Lotus tenuis rhizosphere in the Salado River basin (Argentina). Journal of Applied Microbiology. Vol. 110 p. 1–15. DOI 10.1111/j.1365-2672. 2011.04968.x.
  • DEFIM J., SCHOEBITZ M., PAULINO L., HIRZEL J., ZAGAL E. 2018. Phosphorus availability in wheat, in volcanic soils inoculated with phosphate-solubilizing Bacillus thuringiensis. Sustainability. Vol. 10 p. 144–159. DOI 10.3390/su10010 144.
  • FIANTIS D., HAKIM N., VAN RANST E. 2005. Properties and utilization of Andisols in Indonesia. Journal of Integrated Field Science. Vol. 2 p. 29–37. http://hdl.handle.net/1854/ LU-2020792.
  • GAJ R., BUDKA A., ANTONKIEWICZ J., BĄK K., IZYCHARD P. 2018. Effect of long-term slurry application on contents of available forms of soil macronutrients. Soil Science Annual. Vol. 69. Iss. 3 p. 194–204. DOI 10.2478/ssa-2018-0020.
  • HAJJAM Y., CHERKAOUI S. 2017. The influence of phosphate solubilizing microorganisms on symbiotic nitrogen fixation: perspectives for sustainable agriculture. Journal of Materials and Environmental Sciences. Vol. 8. Iss. 3 p. 801–808.
  • HE Z.L., BIAN B., ZHU J. 2002. Screening and identification of microorganisms capable of utilizing phosphate adsorbed by goethite. Communications in Soil Science and Plant Analysis. Vol. 33. Iss. 5–6 p. 647–663. DOI 10.1081/CSS-120003057.
  • JAIN A., NISHAD K.K., BHOSLE N.B. 2007. Effects of DNP on cell surface properties of marine bacteria and its implication for adhesion to surfaces. Biofouling. Vol. 23. Iss. 3–4 p. 171–177. DOI 10.1080/08927010701269641.
  • JAMAL A., KHAN A., SHARIF M., JAMAL H. 2018. Application of different organic acids on phosphorus solubility from rock phosphate. Journal of Horticulture and Plant Research. Vol. 2 p. 43–48. DOI 10.18052/www.scipress.com/JHPR.2.43.
  • KONIETZNY U., GREINER R. 2004. Bacterial phytase: potential application, in vivo function and regulation of its synthesis. Brazilian Journal of Microbiology. Vol. 35 p. 11–18. DOI 10.1590/S1517-83822004000100002.
  • KPOMBLEKOU-A K., TABATABAI M.A. 2003. Effect of low-molecular weight organic acids on phosphorus release and phytoavailabilty of phosphorus in phosphate rocks added to soils. Agriculture, Ecosystems & Environment. Vol. 100. Iss. 2–3 p. 275–284. DOI 10.1016/S0167-8809(03)00185-3.
  • LACOBAZZI V., INFANTINO V., CONVERTINI P., VOZZA A., AGRIMI G., PALMIERI F. 2009. Trancription of the mitochondrial citrate carrier gene: identification of a silencer and its binding protein ZNF224. Biochemistry and Biophysic Research Communication. Vol. 386 p. 186–191. DOI 10.1016/j.bbrc. 2009.06.003.
  • LI Y., LIU X., HAO T., CHEN S. 2017. Colonization and maize growth promotion induced by phosphate solubilizing bacterial isolates. International Journal Molecular Science. Vol. 18 p. 1253–1269. DOI 10.3390/ijms18071253.
  • MENEZES-BLACKBURN D., STUTTER M., WENDLER R., PAREDES C., GEORGE T.S, BROWN L., ZHANG H., SHAND C., BLACKWELL M., GILES C.D., LUMSDON D., WEARING C., DARCH T., COOPER P., HAYGARTH P.M. 2016. Organic acids regulation of chemical-microbial phosphorus transformations in soils. Environmental Science & Technology. Vol. 50 p. 11521–11531. DOI 10.1021/acs.est.6b03017.
  • MOTAMEDI H., AALIVAND S., VARZI H.N., MOHAMMADI M. 2016. Screening cabbage rhizosphere as a habitat for isolation of phosphate-solubilizing bacteria. Environmental and Experi-mental Biology. Vol. 14 p. 173–181. DOI 10.22364/eeb. 14.24.
  • MUKHAMETZYANOVA A.D., AKHMETOVA A.I., SHARIPOVA M.R. 2012. Microorganisms as phytase producers. Microbiology. Vol. 81 p. 267–275. DOI 10.1134/S0026261712030095.
  • NAMLI A., MAHMOOD A., SEVILIR B., ÖZKIR E. 2017. Effect of phosphorus solubilizing bacteria on some soil properties, wheat yield and nutrient contents. Eurasian Journal Soil Science. Vol. 6. Iss. 3 p. 249–258. DOI 10.18393/ejss. 293157.
  • NNEA (BATAN) 2010. Laporan tahunan 2010 [Annual report 2010]. Jakarta. National Nuclear Energy Agency (Badan Tenaga Atom Nasional/BATAN) p. 7.
  • RICHARDSON A.E., SIMPSON R.J. 2011. Soil microorganisms mediating phosphorus availability. Plant Physiology. Vol. 156(3) p. 989–996. DOI 10.1104/pp.111. 175448.
  • SHARMA S.B., SAYYED R.Z., TRIVEDI M.H., GOBI T.A. 2013. Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. Springer Plus. Vol. 2. Iss. 587 p. 1–14. DOI 10.1186/2193-1801-2-587.
  • SHI X.K., MA J.J., LIU L.J. 2017. Effects of phosphate solubilizing bacteria application on soil phosphorus availability in coal mining subsidence area in Shanxi. Journal of Plant Interactions. Vol. 12. Iss. 1 p. 137–142. DOI 10.1080/17429145. 2017.1308567.
  • SPOHN M., ERMAK A., KUZYAKOV Y. 2013. Microbial gross organic phosphorus mineralization can be stimulated by root exudates – A33 P isotopic dilution study. Soil Biology and Biochemistry Vol. 65 p. 254–263. DOI 10.1016/j.soilbio.2013. 05.028.
  • TABATABAI M.A., BREMNER J.M. 1969. Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biology and Biochemistry. Vol. 1 p. 301–307. DOI 10.1016/0038-0717(69) 90012-1.
  • TAMAD, MARYANTO J. 2010. Media pembawa alternative mikroba pelarut fosfat berbahan limbah pertanian [Alternative carrier of phosphate solubilizing microbial based on agriculture waste]. Agrin. Vol. 14. Iss. 2 p. 167–176.
  • TAMAD 2012. Mekanisme dan efektifitas bakteri fosfat dalam melepaskan fosfor di Andisol [The mechanism and effectivity of phosphate bacteria on phosphorus release in Andisol]. Ph.D. Thesis. Yogyakarta, Indonesia. Gadjah Mada University pp. 196.
  • TAO G.C., TIA S.J., CAI M.Y., XIE G.H. 2008. Phosphate-solubilizing and -mineralizing abilities of bacteria isolated from soils. Pedosphere. Vol. 18. Iss. 4 p. 515–523. DOI 10.1016/S1002-0160(08)60042-9.
  • VANCE C.P., UHDE-STONE C., ALLAN D. 2003. Phosphorus acquisition and use: critical adaptation by plants for securing non-renewable resources. New Phytologist. Vol. 15 p. 423–447. DOI 10.1046/j.1469-8137.2003.00695.x.
  • VILLAMIZAR G.A.C., NACKE H., GRIESE L., TABERNERO L., FUNKNER K, DANIEL R. 2019. Characteristics of the first protein tyrosine phosphatase with phytase activity from a soil metagenome. Genes. Vol. 10 p. 1–6. DOI 10.3390/genes 10020101.
  • WEI L.L., CHEN C.R., XU Z.H. 2009. The effect of low-molecularweight organic acids and inorganic phosphorus concentration on the determination of soil phosphorus by the molybdenum blue reaction. Biology and Fertility of Soils. Vol. 45 p. 775–779. DOI 10.1007/s00374-009-0381-Z.
  • WEIMIN C., YANG F., ZHANG L., WANG J. 2016. Organic acid secretion and phosphate solubilizing efficiency of Pseudomonas sp. psb12: Effects of phosphorus forms and carbon sources. Geomicrobiology Journal. Vol. 33. Iss. 10 p. 870–877. DOI 10.1080/01490451.2015.1123329.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2db2fae5-3ab3-4756-9b6d-2c2f859b1f0c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.