PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigation of the effect of heat treatment process on characteristics and photocatalytic activity of TiO2-UV100 nanoparticles

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The effect of heat treatment process on crystallite size, phase content, surface area, band gap energy and photocatalytic activity of TiO 2-UV100 nanoparticles were investigated. Heat treated TiO2 nanoparticles were characterized by X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) isotherm and diffuse reflectance spectroscopy (DRS) techniques, and its photocatalytic activity was investigated in the removal of C.I. Acid Red 88 (AR88), an anionic monoazo dye of acid class, as a model contaminant. Heat treatment process at 600 °C causes an increase in crystallite size and band gap energy of TiO2-UV100 nanoparticles. The results indicate that the nanoparticles treated for 1 h at 600 °C show the highest photocatalytic activity which can effectively degrade AR88 under UV-irradiation. Increasing heat treatment temperature above 600 °C led to reduction in TiO2 photoactivity which may be related to the anatase-rutile phase transformation, increasing particle size and decreasing specific surface area. Removal efficiency of AR88 with heat treated TiO 2-UV100 nanoparticles was sensitive to the operational parameters such as catalyst dosage, pollutant concentration and light intensity.
Rocznik
Strony
33--46
Opis fizyczny
Bibliogr. 30 poz., tab., wykr.
Twórcy
  • Department of Chemistry, Faculty of Science, Tabriz Branch, Islamic Azad University, Tabriz, I.R. Iran
  • Department of Chemistry, Faculty of Science, Tabriz Branch, Islamic Azad University, Tabriz, I.R. Iran
  • Department of Chemistry, Faculty of Science, Tabriz Branch, Islamic Azad University, Tabriz, I.R. Iran
Bibliografia
  • [1] DANESHVAR N.,RABBANI M., MODIRSHAHLA N.,BEHNAJADY M.A., Kinetic modeling of photocatalytic degradation of Acid Red 27 in UV/TiO2 process,J. Photochem. Photobiol. A, 2004, 168 (1–2), 39.
  • [2] BEHNAJADY M.A., MODIRSHAHLA N., HAMZAVI R., Kinetic study on photocatalytic degradation of C.I. Acid Yellow 23 by ZnO photocatalyst,J. Hazard. Mater., 2006, 133 (1–3), 226.
  • [3] BAKARDJIEVA S., SUBRT J., STENGL V., DIANEZ M.J., SAYAGUES M.J., Photoactivity of anatase-rutile TiO2 nanocrystalline mixtures obtained by heat treatment of homogeneously precipitated anatase, Appl. Catal. B, 2005, 58 (3–4), 193.
  • [4] HOFFMANN M.R., MARTIN S.T.,CHOI W.,BAHNEMNN D.W., Environmental applications of semiconductor photocatalysis, Chem. Rev., 1995, 95 (1), 69.
  • [5] SEERY M.K., GEORGE R., FLORIS P., PILLAI S.C., Silver doped titanium dioxide nanomaterials for enhanced visible light photocatalysis, J. Photochem. Photobiol. A, 2007, 189 (2–3), 258.
  • [6] FUJISHIMA A., RAO T.N., TRYK D.A., Titanium dioxide photocatalysis, J. Photochem. Photobiol. C, 2000, 1 (1), 1.
  • [7] SOBANA N., MURUGANADHAM M., SWAMINATHAN M., Nano-Ag particles doped TiO2 for efficient photodegradation of Direct azo dyes, J. Mol. Catal. A, 2006, 258 (1–2), 124.
  • [8] VAMATHEVAN V., AMAL R.,BEYDOUN D., LOW G., MCEVOY S., Photocatalytic oxidation of organics in water using pure and silver-modified titanium dioxide particles, J. Photochem. Photobiol. A, 2002, 148 (1–3), 233.
  • [9] RAO K.V.S., LAVÉDRINE B., BOULE P., Influence of metallic species on TiO2 for the photocatalytic degradation of dyes and dye intermediates, J. Photochem. Photobiol. A, 2003, 154 (2–3), 189.
  • [10] YU J.C., YU J., ZHANG L., HO W., Enhancing effects of water content and ultrasonic irradiation on the photocatalytic activity of nanosized TiO2 powders, J. Photochem. Photobiol. A, 2002, 148 (1–3), 263.
  • [11] KAWAHARA T., OZAWA T., IWASAKI M., TADA H., ITO S., Photocatalytic activity of rutile- anatase coupled TiO2 particles prepared by a dissolution-reprecipitation method, J. Colloid Interface Sci., 2003, 267 (2), 377.
  • [12] YU J., YU H.,CHENG B., ZHOU M., ZHAO X., Enhanced photocatalytic activity of TiO2 powder (P25) by hydrothermal treatment, J. Mol. Catal. A, 2006, 253 (1–2), 112.
  • [13] WANG J., ZHAO G., ZHANG Z.,ZHANG X., ZHANG G., MA T.,JIANG Y.,ZHANG P.,LI Y.,Investigation on degradation of azo fuchsine using visible light in the presence of heat-treated anatase TiO powder, Dyes Pigm., 2007, 75 (2), 335.
  • [14] MACHADO N.R.C.F., SANTANA V.S., Influence of thermal treatment on the structure and photocatalytic activity of TiO2 P25, Catal. Today, 2005, 107–108 (2), 595.
  • [15] TAKAHASHI J., ITOH H., MOTAI, S.SHIMADA S., Dye adsorption behavior of anatase- and rutile-type TiO2 nanoparticles modified by various heat-treatments, J. Mater. Sci., 2003, 38 (8), 1695.
  • [16] BEHNAJADY M.A., MODIRSHAHLA N., SHOKRI M., ELHAM H., ZEININEZHAD A., The effect of particle size and crystal structure of titanium dioxide nanoparticles on the photocatalytic properties, J. Environ. Sci. Health A, 2008, 43 (5), 460.
  • [17] PATTERSON A.L., The Scherrer formula for X-ray particle size determination, Phys. Rev., 1939, 56 (10), 978.
  • [18] SPURR R.A., MYERS H., Quantitative analysis of anatase-rutile mixtures with an X-ray diffractometer, Anal. Chem., 1957, 29 (5), 760.
  • [19] ABDUL-KADER A.M., Modification of the optical band gap of polyethylene by irradiation with electrons and gamma rays, Philos. Mag. Lett., 2009, 89 (3), 162.
  • [20] SING K.S.W., EVERETT D.H., HAUL R.A.W., MOSCOU L., PIEROTTI R.A., ROUQUEROL J., SIEMIENIEWSKA T.,Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity, Pure Appl. Chem., 1985, 57 (4), 603.
  • [21] BEHNAJADY M.A., ESKANDARLOO H., MODIRSHAHLA N., SHOKRI M., Investigation of the effect of sol–gel synthesis variables on structural and photocatalytic properties of TiO2 nanoparticles, Desalination, 2011, 278 (1–3), 10.
  • [22] KIM C.S., KWON I.M., MOON B.K., JEONG J.H., CHOI B.C., KIM J.H., CHOI H., YI S.S., YOO D.H., HONG K.S., PARK J.H., LEE H.S., Synthesis and particle size effect on the phase transformation of nanocrystalline TiO2, Mater. Sci. Eng. C, 2007, 27 (5–8), 1343.
  • [23] CHEN Y., DIONYSIOU D.D., Correlation of structure properties and film thickness to photocatalytic activity of thick TiO2 films coated on stainless steel, Appl. Catal. B, 2006, 69 (1–2), 24.
  • [24] PORTER J.F.,LI Y.G.,CHAN C.K., The effect of calcination on the microstructural characteristics and photoreactivity of Degussa P-25 TiO2, J. Mater. Sci., 1999, 34 (7), 1523.
  • [25] BEYDOUN D., AMAL R., LOW G., MCEVOY S., Role of nanoparticles in photocatalysis, J. Nanopart. Res., 1999, 1 (4), 439.
  • [26] KRYSA J., KEPPERT M., JIRKOVSKY J., STENGL V., SUBRT J., The effect of thermal treatment on the properties of TiO2 photocatalyst, Mater. Chem. Phys., 2004, 86 (2–3), 333.
  • [27] LV K., XIANG Q., YU J.,Effect of calcination temperature on morphology and photocatalytic activity of anatase TiO2 nanosheets with exposed {001} facets, Appl. Catal. B, 2011, 104 (3–4), 275.
  • [28] KONSTANTINOU I.K., ALBANIS T.A., TiO2–assisted photocatalytic degradation of azo dyes in aqueos solution: kinetic and mechanistic investigation, Appl. Catal. B, 2004, 49 (1), 1.
  • [29] GONÇALVES M.S.T., PINTO E.M.S., NKEONYE P., OLIVEIRA-CAMPOS A.M.F., Degradation of C.I. Reactive Orange 4 and its simulated dyebath wastewater by heterogeneous photocatalysis, Dyes Pigm., 2005, 64 (2), 135.
  • [30] BEHNAJADY M.A.,MODIRSHAHLA N.,DANESHVAR N.,RABBANI M., Photocatalytic degradation of an azo dye in a tubular continuous-flow photoreactor with immobilized TiO2 on glass plates, Chem. Eng. J., 2007, 127 (1–3), 167.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2db1c692-b4ec-45f3-993a-837753671312
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.