PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Coherent noise attenuation for passive seismic data based on iterative two dimensional model shrinkage

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Passive seismic source imaging can be utilized to recover geophysical information from subsurface ambient noise. Compared with conventional active seismic exploration, passive seismic source imaging is cost-efective and environmentally friendly. However, passive data acquisition cannot easily satisfy the theoretical condition, leading to noised virtual-shot gathers. Furthermore, coherent noise limits the application of passive source data. Although image quality improvement techniques for passive source data have recently attracted considerable interest, the denoising problem for virtual-shot gathers is seldom considered. In this study, we propose an iterative denoising approach for passive seismic data. The criterion used to extract useful signals is the diference between the wavefeld similarity of useful events and the coherent noise in various gathers, i.e., the common shot gather and common receiver gather. We adopted local similarity to measure the similarity level and extract major useful events. However, the close local similarity between weak events and coherent noise may cause signal leakages and singular noise residuals. We incorporated an iterative two-dimensional model shrinkage algorithm into the denoising process to suppress the singular noise residual and highlight useful events. The proposed approach can overcome the limits of strong coherent noise in virtual-shot gathers, which can extend the choice range for data processing. Synthetic and feld examples demonstrate a promising coherent noise attenuation performance, illustrating the efectiveness and feasibility of the proposed method. The denoised migrated section exhibits a smaller depth error and higher quality
Czasopismo
Rocznik
Strony
773--782
Opis fizyczny
Bibliogr. 27 poz.
Twórcy
autor
  • College of Geo-Exploration Science and Technology, Jilin University, Changchun 130026, People’s Republic of China
autor
  • College of Geo-Exploration Science and Technology, Jilin University, Changchun 130026, People’s Republic of China
autor
  • College of Geo-Exploration Science and Technology, Jilin University, Changchun 130026, People’s Republic of China
Bibliografia
  • 1. Artman B (2006) Imaging passive seismic data. Geophysics doi 10(1190/1):2209748
  • 2. Calvert RW, Bakulin A, Jones TC (2004) Virtual sources, a new way to remove overburden problems. 66th EAGE Conference and Exhibition https://doi.org/https://doi.org/10.3997/2214-4609-pdb.3.P234
  • 3. Chen Y, Fomel S (2014) Random noise attenuation using local similarity 84th SEG Tech. Abstr, Program Expand
  • 4. Chen Y, Fomel S, Hu J (2013) Iterative deblending of simultaneous-source seismic data using seislet-domain shaping regularization. Geophysics. https://doi.org/10.1190/GEO2013-0449.1
  • 5. Chen Y, Zhang L, Mo LW (2015) Seismic data interpolation using nonlinear shaping regularization. J Seism Explor 24(4):327–342
  • 6. Cheng H, Wang DL, Feng F, Zhu H (2015) Estimating primaries from passive seismic data. Explor Geophys. https://doi.org/10.1071/EG14079
  • 7. Claerbout JF (1968) Synthesis of a layered medium from its acoustic transmission response. Geophysics. https://doi.org/10.1190/1.1439927
  • 8. Fomel S (2002) Applications of plane-wave destruction filters. Geophysics. https://doi.org/10.1190/1.1527095
  • 9. Fomel S (2005) Shaping regularization in geophysical-estimation problems. Geophysics 24(2):R29
  • 10. Fomel S (2007a) Local seismic attributes. Geophysics. https://doi.org/10.1190/1.2437573
  • 11. Fomel S (2007b) Shaping regularization in geophysical-estimation problems. Geophysics. https://doi.org/10.1190/1.2433716
  • 12. Fomel S (2009) Adaptive multiple subtraction using regularized nonstationary regression. Geophysics. https://doi.org/10.1190/1.3043447
  • 13. Fomel S, Liu Y (2010) Seislet transform and seislet frame. Geophysics. https://doi.org/10.1190/1.3380591
  • 14. Hu B, Wang DL, Zhang L, Zeng ZF (2019) Rock location and quantitative analysis of regolithat the chang’e 3 landing site based on localsimilarity constraint. Remote Sens. https://doi.org/10.3390/rs11050530
  • 15. Hu B, Wang DL, Wang R (2020) An iterative focal denoising strategy for passive seismic data. Pure Appl Geophys. https://doi.org/10.1007/s00024-020-02534-9
  • 16. Liu G, Fomel S, Chen X (2009a) Time-frequency characterization of seismic data using local attributes. Geophysics. https://doi.org/10.1190/geo2010-0185.1
  • 17. Liu Y, Fomel S, Liu C, Wang D, Liu L, Feng X (2009b) High-order seislet transform and its application of random noise attenuation. Chin J Geophys. https://doi.org/10.3969/j-issn.0001-5733.2009.08.024
  • 18. Liu Y, Fomel S, Liu G (2010) Nonlinear structure-enhancing filtering using plane-wave prediction. Geophys Prospect. https://doi.org/10.1111/j.1365-2478.2009.00840.x
  • 19. Liu GC, Chen XH, Li JY, Du J, Song JW (2011) Seismic noise attenuation using nonstationary polynomial fitting. Appl Geophys. https://doi.org/10.1007/s11770-010-0244-2
  • 20. Liu C, Li P, Liu Y, Wang D, Feng X, Liu DM (2013) Iterative data interpolation beyond aliasing using seislet transform. Chin J Geophys. https://doi.org/10.6038/cjg20130519
  • 21. Schuster GT, Yu J, Sheng J, Rickett J (2004) Interferometric/daylight seismic imaging. Geophys J Int. https://doi.org/10.1111/j.1365-246X.2004.02251.x
  • 22. Sweldens W (1996) The lifting scheme: a custom-design construction of biorthogonal wavelets. Appl Comput Harmon Anal. https://doi.org/10.1006/acha.1996.0015
  • 23. Wapenaar K, Draganov D, Snieder R, Campman X, Verdel A (2010) Tutorial on seismic interferometry. Part i: basic principles and applications. Geophysics. https://doi.org/10.1190/1.3457445
  • 24. Wapenaar K, Slob E, Snieder R, Curtis A (2010) Tutorial on seismic interferometry: part 2: underlying theory and advances. Geophysics. https://doi.org/10.1190/1.3463440
  • 25. Wapenaar K, van der Neut J, Ruigrok E (2011) Seismic interferometry by crosscorrelation and by multidimensional deconvolution: a systematic comparison. Geophys J Int. https://doi.org/10.1111/j.1365-246X.2011.05007.x
  • 26. Zhu H, Wang DL, Shi Z, Feng F (2012) Passive seismic imaging of seismic interferometry. Prog in Geophys 27(2):496–502
  • 27. Zhu H, Wang DL, Tsoflias G (2015) Seismic interferometry in parabolic radon domain. J Seism Explor 24(1):37–50
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2dad499d-e184-45d7-8952-323b03b24658
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.