PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Biphasic monolithic osteochondral scaffolds obtained by diffusion-limited enzymatic mineralization of gellan gum hydrogel

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Biphasic monolithic materials for the treatment of osteochondral defects were produced from polysaccharide hydrogel, gellan gum (GG). GG was enzymatically mineralized by alkaline phosphatase (ALP) in the presence of calcium glycerophosphate (CaGP). The desired distribution of the calcium phosphate (CaP) mineral phase was achieved by limiting the availability of CaGP to specific parts of the GG sample. Therefore, mineralization of GG was facilitated by the diffusion of CaGP, causing the formation of the CaP gradient. The distribution of CaP was analyzed along the cross section of the GG. The formation of a CaP gradient was mainly affected by the mineralization time and the ALP concentration. The formation of CaP was confirmed by Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy and mapping, as well as energy-dispersive X-ray spectroscopy (EDX) mapping of the interphase. The microstructure of mineralized and non-mineralized parts of the material was characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM) showing sub-micrometer CaP crystal formation, resulting in increased surface roughness. Compression tests and rheometric analyzes showed a 10-fold increase in stiffness of the GG mineralized part. Concomitantly, micromechanical tests performed by AFM showed an increase of Young’s modulus from 17.8 to more than 200 kPa. In vitro evaluation of biphasic scaffolds was performed in contact with osteoblast-like MG-63 cells. The mineralized parts of GG were preferentially colonized by the cells over the non-mineralized parts. The results showed that osteochondral scaffolds of the desired structure and properties can be made from GG using a diffusion-limited enzymatic mineralization method.
Twórcy
  • AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Biomaterials and Composites, Kraków, Poland
  • AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Biomaterials and Composites, Kraków, Poland
  • University of Oslo, Institute for Clinical Dentistry, Department of Biomaterials, Oslo, Norway
  • University of Oslo, Institute for Clinical Dentistry, Department of Biomaterials, Oslo, Norway
  • University of Cergy Pontoise, Biology Department, ERRMECe Laboratory, Cergy-Pontoise, Neuville-sur-Oise, France
  • AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Biomaterials and Composites, Al. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
  • [1] Deng C, Chang J, Wu C. Bioactive scaffolds for osteochondral regeneration. J Orthop Transl 2019;17:15-25. https://doi.org/ 10.1016/j.jot.2018.11.006.
  • [2] Meng X, Ziadlou R, Grad S, Alini M, Wen C, Lai Y, et al. Animal models of osteochondral defect for testing biomaterials. Biochem Res Int 2020;2020:1-12. https://doi.org/10.1155/2020/ 9659412.
  • [3] DeFroda SF, Bokshan SL, Yang DS, Daniels AH, Owens BD. Trends in the surgical treatment of articular cartilage lesions in the United States from 2007 to 2016. J Knee Surg 2021;34:1609-16. https://doi.org/10.1055/s-0040-1712946.
  • [4] Frassica MT, Grunlan MA. Perspectives on synthetic materials to guide tissue regeneration for osteochondral defect repair. ACS Biomater Sci Eng 2020;6:4324-36. https://doi.org/10.1021/ acsbiomaterials.0c00753.
  • [5] Panseri S, Russo A, Cunha C, Bondi A, Di Martino A, Patella S, et al. Osteochondral tissue engineering approaches for articular cartilage and subchondral bone regeneration. Knee Surg Sports Traumatol Arthrosc 2012;20:1182-91. https://doi. org/10.1007/s00167-011-1655-1.
  • [6] Boffa A, Solaro L, Poggi A, Andriolo L, Reale D, Di Martino A. Multi-layer cell-free scaffolds for osteochondral defects of the knee: a systematic review and meta-analysis of clinical evidence. J Exp Orthop 2021;8:56. https://doi.org/10.1186/s40634-021-00377-4.
  • [7] Ai C, Lee YHD, Tan XH, Tan SHS, Hui JHP, Goh J-C-H. Osteochondral tissue engineering: perspectives for clinical application and preclinical development. J Orthop Transl 2021;30:93-102. https://doi.org/10.1016/j.jot.2021.07.008.
  • [8] Zhang X, Liu Y, Zuo Q, Wang Q, Li Z, Yan K, et al. 3D bioprinting of biomimetic bilayered scaffold consisting of decellularized extracellular matrix and silk fibroin for osteochondral repair. Int J Bioprinting 2021;7:401. https://doi. org/10.18063/ijb.v7i4.401.
  • [9] Duan P, Pan Z, Cao L, Gao J, Yao H, Liu X, et al. Restoration of osteochondral defects by implanting bilayered poly(lactideco-glycolide) porous scaffolds in rabbit joints for 12 and 24 weeks. J Orthop Transl 2019;19:68-80. https://doi.org/10.1016/ j.jot.2019.04.006.
  • [10] Yang T, Tamaddon M, Jiang L, Wang J, Liu Z, Liu Z, et al. Bilayered scaffold with 3D printed stiff subchondral bony compartment to provide constant mechanical support for long-term cartilage regeneration. J Orthop Transl 2021;30:112-21. https://doi.org/10.1016/j.jot.2021.09.001.
  • [11] Peters AE, Akhtar R, Comerford EJ, Bates KT. The effect of ageing and osteoarthritis on the mechanical properties of cartilage and bone in the human knee joint. Sci Rep 2018;8:5931. https://doi.org/10.1038/s41598-018-24258-6.
  • [12] Trinity Centre for Bioengineering, Department of Mechanical Engineering, Parsons Building, Trinity College Dublin, Dublin 2, Ireland, Gannon A, Nagel T, Bell A, Avery N, Kelly D. Postnatal changes to the mechanical properties of articular cartilage are driven by the evolution of its collagen network. Eur Cell Mater 2015;29:105-23. https://doi.org/10.22203/eCM.v029a09.
  • [13] Antons J, Marascio MGM, Nohava J, Martin R, Applegate LA, Bourban PE, et al. Zone-dependent mechanical properties of human articular cartilage obtained by indentation measurements. J Mater Sci Mater Med 2018;29:57. https://doi. org/10.1007/s10856-018-6066-0.
  • [14] Nooeaid P, Salih V, Beier JP, Boccaccini AR. Osteochondral tissue engineering: scaffolds, stem cells and applications. J Cell Mol Med 2012;16:2247-70. https://doi.org/10.1111/j.1582- 4934.2012.01571.x.
  • [15] Fu J-N, Wang X, Yang M, Chen Y-R, Zhang J-Y, Deng R-H, et al. Scaffold-Based tissue engineering strategies for osteochondral repair. Front Bioeng Biotechnol 2022;9. https:// doi.org/10.3389/fbioe.2021.812383 812383.
  • [16] Wei W, Dai H. Articular cartilage and osteochondral tissue engineering techniques: recent advances and challenges. Bioact Mater 2021;6:4830-55. https://doi.org/10.1016/j. Bioactmat.2021.05.011.
  • [17] Lin T-H, Wang H-C, Cheng W-H, Hsu H-C, Yeh M-L. Osteochondral tissue regeneration using a tyramine-modified bilayered PLGA scaffold combined with articular chondrocytes in a porcine model. Int J Mol Sci 2019;20:326. https://doi.org/10.3390/ijms20020326.
  • [18] Chicatun F, Rezabeigi E, Muja N, Kaartinen MT, McKee MD, Nazhat SN. A bilayered dense collagen/chitosan hydrogel to model the osteochondral interface. Emergent Mater 2019;2:245-62. https://doi.org/10.1007/s42247-019-00044-6.
  • [19] Liang X, Duan P, Gao J, Guo R, Qu Z, Li X, et al. Bilayered PLGA/ PLGA-HAp composite scaffold for osteochondral tissue engineering and tissue regeneration. ACS Biomater Sci Eng 2018;4:3506-21. https://doi.org/10.1021/ acsbiomaterials.8b00552.
  • [20] Zhang W, Lian Q, Li D, Wang K, Hao D, Bian W, et al. The effect of interface microstructure on interfacial shear strength for osteochondral scaffolds based on biomimetic design and 3D printing. Mater Sci Eng C 2015;46:10-5. https://doi.org/ 10.1016/j.msec.2014.09.042.
  • [21] Asensio G, Benito-Garzón L, Ramírez-Jiménez RA, Guadilla Y, Gonzalez-Rubio J, Abradelo C, et al. Biomimetic gradient scaffolds containing hyaluronic acid and Sr/Zn folates for osteochondral tissue engineering. Polymers 2021;14:12. https://doi.org/10.3390/polym14010012.
  • [22] Catoira MC, Fusaro L, Di Francesco D, Ramella M, Boccafoschi F. Overview of natural hydrogels for regenerative medicine applications. J Mater Sci Mater Med 2019;30:115. https://doi. org/10.1007/s10856-019-6318-7.
  • [23] Ng JY, Obuobi S, Chua ML, Zhang C, Hong S, Kumar Y, et al. Biomimicry of microbial polysaccharide hydrogels for tissue engineering and regenerative medicine – A review. Carbohydr Polym 2020;241. https://doi.org/10.1016/j.carbpol.2020.116345 116345.
  • [24] Hoffman AS. Hydrogels for biomedical applications. Adv Drug Deliv Rev 2012;64:18-23. https://doi.org/10.1016/j. Addr.2012.09.010.
  • [25] Ullah F, Othman MBH, Javed F, Ahmad Z, Akil HM. Classification, processing and application of hydrogels: a review. Mater Sci Eng C 2015;57:414-33. https://doi.org/ 10.1016/j.msec.2015.07.053.
  • [26] Chamkouri H. A review of hydrogels, their properties and applications in medicine. Am J Biomed Sci Res 2021;11:485-93. https://doi.org/10.34297/AJBSR.2021.11.001682.
  • [27] Correa S, Grosskopf AK, Lopez Hernandez H, Chan D, Yu AC, Stapleton LM, et al. Translational applications of hydrogels. Chem Rev 2021;121:11385-457. https://doi.org/10.1021/acs. chemrev.0c01177.
  • [28] Wei W, Ma Y, Yao X, Zhou W, Wang X, Li C, et al. Advanced hydrogels for the repair of cartilage defects and regeneration. Bioact Mater 2021;6:998-1011. https://doi.org/10.1016/j. Bioactmat.2020.09.030.
  • [29] Lin H, Yin C, Mo A, Hong G. Applications of hydrogel with special physical properties in bone and cartilage regeneration. Materials 2021;14:235. https://doi.org/ 10.3390/ma14010235.
  • [30] Xin W, Gao Y, Yue B. Recent advances in multifunctional hydrogels for the treatment of osteomyelitis. Front Bioeng Biotechnol 2022;10. https://doi.org/10.3389/fbioe.2022.865250 865250.
  • [31] Chen Z, Xiao H, Zhang H, Xin Q, Zhang H, Liu H, et al. Heterogenous hydrogel mimicking the osteochondral ECM applied to tissue regeneration. J Mater Chem B 2021;9:8646-58. https://doi.org/10.1039/D1TB00518A.
  • [32] Yang Z, Zhao T, Gao C, Cao F, Li H, Liao Z, et al. 3D-Bioprinted difunctional scaffold for in situ cartilage regeneration based on aptamer-directed cell recruitment and growth factorenhanced cell chondrogenesis. ACS Appl Mater Interfaces 2021;13:23369-83. https://doi.org/10.1021/acsami.1c01844.
  • [33] Kilian D, Ahlfeld T, Akkineni AR, Bernhardt A, Gelinsky M, Lode A. 3D Bioprinting of osteochondral tissue substitutes – in vitro-chondrogenesis in multi-layered mineralized constructs. Sci Rep 2020;10:8277. https://doi.org/10.1038/s41598-020-65050-9.
  • [34] Xing J, Peng X, Li A, Chen M, Ding Y, Xu X, et al. Gellan gum/alginate-based Ca-enriched acellular bilayer hydrogel with robust interface bonding for effective osteochondral repair. Carbohydr Polym 2021;270. https://doi.org/10.1016/ j.carbpol.2021.118382 118382.
  • [35] Huang B, Li P, Chen M, Peng L, Luo X, Tian G, et al. Hydrogel composite scaffolds achieve recruitment and chondrogenesis in cartilage tissue engineering applications. J Nanobiotechnology 2022;20:25. https://doi.org/10.1186/s12951-021-01230-7.
  • [36] Chen Y, Chen Y, Xiong X, Cui R, Zhang G, Wang C, et al. Hybridizing gellan/alginate and thixotropic magnesium phosphate-based hydrogel scaffolds for enhanced osteochondral repair. Mater Today Bio 2022;14. https://doi. org/10.1016/j.mtbio.2022.100261 100261.
  • [37] Lafuente-Merchan M, Ruiz-Alonso S, García-Villén F, Gallego I, Gálvez-Martín P, Saenz-del-Burgo L, et al. Progress in 3D bioprinting technology for osteochondral regeneration. Pharmaceutics 2022;14:1578. https://doi.org/10.3390/ pharmaceutics14081578.
  • [38] Osmałek T, Froelich A, Tasarek S. Application of gellan gum in pharmacy and medicine. Int J Pharm 2014;466:328-40. https://doi.org/10.1016/j.ijpharm.2014.03.038.
  • [39] Costa L, Silva-Correia J, Oliveira JM, Reis RL. Gellan Gum-Based Hydrogels for Osteochondral Repair. In: Oliveira JM, Pina S, Reis RL, San Roman J, editors. Osteochondral Tissue Eng, vol. 1058. Cham: Springer International Publishing; 2018. p. 281-304. https://doi.org/10.1007/978-3- 319-76711-6_13.
  • [40] Chen M, Yu P, Xing J, Wang Y, Ren K, Zhou G, et al. Gellan gum modified hyaluronic acid hydrogels as viscosupplements with lubrication maintenance and enzymatic resistance. J Mater Chem B 2022;10:4479-90. https://doi.org/10.1039/D2TB00421F.
  • [41] Leone G, Consumi M, Pepi S, Pardini A, Bonechi C, Tamasi G, et al. Enriched Gellan Gum hydrogel as visco-supplement. Carbohydr Polym 2020;227. https://doi.org/10.1016/ j.carbpol.2019.115347 115347.
  • [42] Akkineni AR, Elci BS, Lode A, Gelinsky M. Addition of high acyl gellan gum to low acyl gellan gum enables the blends 3D bioprintable. Gels 2022;8:199. https://doi.org/10.3390/ gels8040199.
  • [43] Mouser VHM, Melchels FPW, Visser J, Dhert WJA, Gawlitta D, Malda J. Yield stress determines bioprintability of hydrogels based on gelatin-methacryloyl and gellan gum for cartilage bioprinting. Biofabrication 2016;8(3):035003. https://doi.org/ 10.1088/1758-5090/8/3/035003.
  • [44] Douglas TEL, Messersmith PB, Chasan S, Mikos AG, de Mulder ELW, Dickson G, et al. Enzymatic mineralization of hydrogels for bone tissue engineering by incorporation of alkaline phosphatase: enzymatic mineralization of hydrogels for bone tissue engineering by incorporation of alkaline phosphatase. Macromol Biosci 2012;12:1077-89. https://doi. org/10.1002/mabi.201100501.
  • [45] Douglas TEL, Łapa A, Samal SK, Declercq HA, Schaubroeck D, Mendes AC, et al. Enzymatic, urease-mediated mineralization of gellan gum hydrogel with calcium carbonate, magnesium-enriched calcium carbonate and magnesium carbonate for bone regeneration applications: hydrogels enzymatically mineralized with Ca/Mg-carbonate. J Tissue Eng Regen Med 2017;11:3556-66. https://doi.org/10.1002/term.2273.
  • [46] Zhang Y, Shu T, Wang S, Liu Z, Cheng Y, Li A, et al. The osteoinductivity of calcium phosphate-based biomaterials: a tight interaction with bone healing. Front Bioeng Biotechnol 2022;10. https://doi.org/10.3389/fbioe.2022.911180 911180.
  • [47] Wang L, Huang Y, Ding K, Lai Y, Mao R, Luo F, et al. Polyphosphate enhanced biomimetic mineralization of 3D printing scaffolds for bone regeneration. Compos Part B Eng 2022;239. https://doi.org/10.1016/j.compositesb.2022.109989 109989.
  • [48] Lopez-Heredia MA, Łapa A, Reczyn´ ska K, Pietryga K, Balcaen L, Mendes AC, et al. Mineralization of gellan gum hydrogels with calcium and magnesium carbonates by alternate soaking in solutions of calcium/magnesium and carbonate ion solutions. J Tissue Eng Regen Med 2018;12:1825-34. https://doi.org/10.1002/term.2675.
  • [49] Gkioni K, Leeuwenburgh SCG, Douglas TEL, Mikos AG, Jansen JA. Mineralization of Hydrogels for Bone Regeneration. Tissue Eng Part B Rev 2010;16:577-85. https://doi.org/10.1089/ten.teb.2010.0462.
  • [50] Yao J, Fang W, Guo J, Jiao D, Chen S, Ifuku S, et al. Highly mineralized biomimetic polysaccharide nanofiber materials using enzymatic mineralization. Biomacromolecules 2020;21:2176-86. https://doi.org/10.1021/acs.biomac.0c00160.
  • [51] Douglas T, Wlodarczyk M, Pamula E, Declercq H, de Mulder E, Bucko M, et al. Enzymatic mineralization of gellan gum hydrogel for bone tissue-engineering applications and its enhancement by polydopamine: enzymatic mineralization of gellan gum enhanced by polydopamine functionalization. J Tissue Eng Regen Med 2014;8:906-18. https://doi.org/10.1002/ term.1616.
  • [52] Guo Y, Du S, Quan S, Jiang F, Yang C, Li J. Effects of biophysical cues of 3D hydrogels on mesenchymal stem cells differentiation. J Cell Physiol 2021;236:2268-75. https://doi. org/10.1002/jcp.30042.
  • [53] Qiu Y, Xu X, Guo W, Zhao Y, Su J, Chen J. Mesoporous hydroxyapatite nanoparticles mediate the release and bioactivity of BMP-2 for enhanced bone regeneration. ACS Biomater Sci Eng 2020;6:2323-35. https://doi.org/10.1021/ acsbiomaterials.9b01954.
  • [54] Wei S, Deng Y, Liu X, Xu A, Wang L, Luo Z, et al. Effect of surface roughness on osteogenesis in vitro and osseointegration in vivo of carbon fiber-reinforced polyetheretherketone-nanohydroxyapatite composite. Int J Nanomedicine 2015:1425. https://doi.org/10.2147/IJN.S75557.
  • [55] Douglas TEL, Gassling V, Declercq HA, Purcz N, Pamula E, Haugen HJ, et al. Enzymatically induced mineralization of platelet-rich fibrin. J Biomed Mater Res A 2012;100A:1335-46. https://doi.org/10.1002/jbm.a.34073.
  • [56] Douglas TEL, Krawczyk G, Pamula E, Declercq HA, Schaubroeck D, Bucko MM, et al. Generation of composites for bone tissue-engineering applications consisting of gellan gum hydrogels mineralized with calcium and magnesium phosphate phases by enzymatic means: Gellan gum and calcium and magnesium phosphate composites. J Tissue Eng Regen Med 2016;10:938-54. https://doi.org/10.1002/term.1875.
  • [57] Flores-Merino MV, Chirasatitsin S, LoPresti C, Reilly GC, Battaglia G, Engler AJ. Nanoscopic mechanical anisotropy in hydrogel surfaces. Soft Matter 2010;6:4466. https://doi.org/ 10.1039/c0sm00339e.
  • [58] Silva-Correia J, Oliveira JM, Caridade SG, Oliveira JT, Sousa RA, Mano JF, et al. Gellan gum-based hydrogels for intervertebral disc tissue-engineering applications. J Tissue Eng Regen Med 2011;5:e97-e. https://doi.org/10.1002/term.363.
  • [59] Milovanovic M, Mihailowitsch L, Santhirasegaran M, Brandt V, Tiller JC. Enzyme-induced mineralization of hydrogels with amorphous calcium carbonate for fast synthesis of ultrastiff, strong and tough organic–inorganic double networks. J Mater Sci 2021;56:15299-312. https://doi.org/10.1007/s10853-021-06204-6.
  • [60] Nonoyama T. Robust hydrogel-bioceramics composite and its osteoconductive properties. Polym J 2020;52:709-16. https:// doi.org/10.1038/s41428-020-0332-y.
  • [61] Axpe E, Chan D, Offeddu GS, Chang Y, Merida D, Hernandez HL, et al. A multiscale model for solute diffusion in hydrogels. Macromolecules 2019;52:6889-97. https://doi.org/ 10.1021/acs.macromol.9b00753.
  • [62] Wu VM, Uskoković V. Is there a relationship between solubility and resorbability of different calcium phosphate phases in vitro? Biochim Biophys Acta BBA - Gen Subj 2016;1860:2157-68. https://doi.org/10.1016/j.bbagen.2016.05.022.
  • [63] Pietryga K, Costa J, Pereira P, Douglas TEL, Pamula E. Promotion of bone cel growth on gellan gum hydrogels by enzymatic mineralization. Eng Biomat 2014;125:6-12.
  • [64] Douglas TEL, Dokupil A, Reczyńska K, Brackman G, Krok-Borkowicz M, Keppler JK, et al. Enrichment of enzymatically mineralized gellan gum hydrogels with phlorotannin-rich Ecklonia cava extract Seanol to endow antibacterial properties and promote mineralization. Biomed Mater 2016;11. https://doi.org/10.1088/1748-6041/11/4/045015 045015.
  • [65] Morris ER, Nishinari K, Rinaudo M. Gelation of gellan – A review. Food Hydrocoll 2012;28:373-411. https://doi.org/ 10.1016/j.foodhyd.2012.01.004.
  • [66] Sun M, Chi G, Li P, Lv S, Xu J, Xu Z, et al. Effects of matrix stiffness on the morphology, adhesion, proliferation and osteogenic differentiation of mesenchymal stem cells. Int J Med Sci 2018;15:257-68. https://doi.org/10.7150/ijms.21620.
  • [67] Zhou Y, Qiu J, Wan L, Li J. The effect of matrix stiffness on the chondrogenic differentiation of mesenchymal stem cells. J Mol Histol 2022;53:805-16. https://doi.org/10.1007/s10735-022-10094-6.
  • [68] Karim A, Amin AK, Hall AC. The clustering and morphology of chondrocytes in normal and mildly degenerate human femoral head cartilage studied by confocal laser scanning microscopy. J Anat 2018;232:686-98. https://doi.org/10.1111/joa.12768.
  • [69] Campbell SE, Ferguson VL, Hurley DC. Nanomechanical mapping of the osteochondral interface with contact resonance force microscopy and nanoindentation. Acta Biomater 2012;8:4389-96. https://doi.org/10.1016/j.actbio.2012.07.042.
  • [70] Di Luca A, Van Blitterswijk C, Moroni L. The osteochondral interface as a gradient tissue: from development to the fabrication of gradient scaffolds for regenerative medicine: the Osteochondral Interface as a Gradient Tissue. Birth Defects Res Part C Embryo Today Rev 2015;105:34-52. https:// doi.org/10.1002/bdrc.21092.
  • [71] Samal SK, Dash M, Declercq HA, Gheysens T, Dendooven J, Voort PVD, et al. Enzymatic mineralization of silk scaffolds: enzymatic mineralization of silk scaffolds. Macromol Biosci 2014;14:991-1003. https://doi.org/10.1002/mabi.201300513.
  • [72] Norris K, Kocot M, Tryba AM, Chai F, Talari A, Ashton L, et al. Marine-Inspired enzymatic mineralization of dairy-derived Whey Protein Isolate (WPI) hydrogels for bone tissue regeneration. Mar Drugs 2020;18:294. https://doi.org/10.3390/ md18060294.
  • [73] Drobnič M, Kolar M, Verdonk P, Vannini F, Robinson D, Altschuler N, et al. Complex osteochondral lesions of the talus treated with a novel Bi-Phasic aragonite-based implant. J Foot Ankle Surg 2021;60:391-5. https://doi.org/10.1053/j. Jfas.2020.06.028.
  • [74] Goldring SR, Goldring MB. Changes in the osteochondral unit during osteoarthritis: structure, function and cartilage-bone crosstalk. Nat Rev Rheumatol 2016;12:632-44. https://doi.org/ 10.1038/nrrheum.2016.148.
  • [75] Banh L, Cheung KK, Chan MWY, Young EWK, Viswanathan S. Advances in organ-on-a-chip systems for modelling joint tissue and osteoarthritic diseases. Osteoarthritis Cartilage 2022;30:1050-61. https://doi.org/10.1016/j.joca.2022.03.012.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2dad2e6d-7cfc-4d6d-9818-5de6826bbb79
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.