Powiadomienia systemowe
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A method of optimal control problems investigation for linear partial integro-differential equations of convolution type is proposed, when control process is carried out by boundary functions and right hand side of equation. Using Fourier real generalized integral transform control problem solution is reduced to minimization procedure of chosen optimality criterion under constraints of equality type on desired control function. Optimality of control impacts is obtained for two criteria, evaluating their linear momentum and total energy. Necessary and sufficient conditions of control problem solvability are obtained for both criteria. Numerical calculations are done and control functions are plotted for both cases of control process realization.
Czasopismo
Rocznik
Tom
Strony
5--25
Opis fizyczny
Bibliogr. 21 poz., rys., wzory
Twórcy
autor
- Faculty of Mathematics and Mechanics, Yerevan State University, Alex Manoogian Str. 1, 0025 Yerevan, Armenia
Bibliografia
- [1] A. G. Butkovskii: Methods of Control of Distributed Parameters Systems. Nauka publ., Moscow, 1975, (in Russian).
- [2] V. D. Blondel and A. Megretski (Ed): Unsolved Problems in Mathematical Systems and Control Theory. Princeton University Press, Princeton, 2004.
- [3] J. M. Appel, A. S. Kalitvin and P. P. Zabrejko: Partial Integral Operators and Integro-Differential Equations. M. Dekkar, New York, 2000.
- [4] E. W. Sachs and A. K. Strauss: Efficient solution of partial integro-differential equation in finance. Applied Numerical Math., 58(11) (2008), 1687-1703.
- [5] J. Thorwe and S. Bhalekar: Solving partial integro-differential equations using Laplace transform method. American J. of Computational and Applied Math., 2(3) (2012), 101-104.
- [6] J. M. Sanz-Serna: A numerical method for a partial integro-differential equation.SIAM J. Numerical Analysis, 25(2) (1998), 319-327.
- [7] M. B. Vinogradova, O. V. Rudenko and A. P. Sukhorukov: Theory of Waves, 2nd ed., Nauka publ., Moscow, 1990, (in Russian).
- [8] K. Balachandran and E. R. Anandhi: Boundary controllability of integrodifferential systems in Banach spaces. Proc. of Indian Academy of Sciences, 111(1) (2001), 127-135.
- [9] Sh. Chiang: Numerical minimum time control to a class of singular integro- differential equations. Abstracts of MMAAMOE, Tartu, Estonia, (2013).
- [10] S. Kerbal and Y. Jiang: General integro-differential equations and optimal controls in Banach spaces. J. of Industrial and Management Optimization, 3(1) (2007), 119-128.
- [11] A. S. Smyshlyaev: Explicit and parameter-adaptive boundary control laws for parabolic partial differential equations. PhD thesis, University of California, San Diego, 2006.
- [12] A. Zh. Khurshudyan: On optimal boundary control of non-homogeneous string vibrations under impulsive concentrated perturbations with delay in controls. Mathematical Bulletin of T. Shevchenko Scientific Society, 10 (2013), 203-203.
- [13] A. Zh. Khurshudyan and Sh. Kh. Arakelyan: Delaying control of non- homogeneous string forced vibrations under mixed boundary conditions. IEEE Proceedings on Control and Communication, 10 (2013), 1-5.
- [14] N. N. Krasovskii: Motion Control Theory. Nauka publ, Moscow, 1968, (in Russian).
- [15] G. E. Shilov: Mathematical Analysis. The Second Special Course, 2nd ed. MSU publ., Moscow, 1984, (in Russian).
- [16] P. Hillion: Electromagnetic pulse propagation in dispersive media, Progress in Electromagnetics Research, 35 (2002), 299-314.
- [17] F. D. Gakhov and Yu. I. Cherskii: Convolution Type Equations, Nauka publ.Moscow, 1978, (in Russian).
- [18] A. F. Voronin: Necessary and sufficient well-posedness conditions for a convolution equation of the second kind with even kernel on a finite interval. Siberian Math. Journal, 48(4) (2008), 601-611.
- [19] J. T. Betts: Practical Methods of Optimal Control Using Nonlinear Programming.SIAM, Advances in Design and Control, 2001.
- [20] E. KH. Grigoryan and K. L. Aghayan: On a new method of asymptotic formulas determination in waves diffraction problems. Reports of NAS of Armenia, 110(3) (2010), 261-271.
- [21] R. M. Cortes, G. H. Gonnet, D. E. G. Hare, J. D. Jeffrey And D. E. Knuth: On the Lambert W function. Advances in Computational Mathematics. 5(1) (1996), 329-359.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2dac60a0-407d-456a-ab42-d49945f6e03d