PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Variable density acoustic RTM of VSP data based on the time–space domain LS-based SFD method

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Vertical seismic profling (VSP) can provide more abundant seismic wavefeld information and better seismic data with high resolution and high quality for the complex underground geological structures compared with surface seismic data. Reverse time migration (RTM) method possesses signifcant advantages for the accurate identifcation of complex geological structures, and it’s considered to be the most accurate imaging method at present. Therefore, we develop a variable density acoustic RTM method which is applicable for VSP data to enhance the recognition capability of complex geological structures, and we also discuss diferent aspects of this proposed imaging method. Firstly, to efectively improve the modeling precision of seismic wavefelds, the wavefeld extrapolation of our VSP RTM method is realized by using an optimal staggered-grid fnite diference (SFD) method to solve the variable density acoustic wave equation, because this optimal SFD method uses the least square (LS) method to optimize the objective function established by the time–space domain dispersion relation to estimate its diference coefcients. In other words, the time–space domain LS-based SFD method has higher numerical simulation accuracy for seismic modeling. Secondly, to efectively reduce the boundary refections and storage requirements of our VSP RTM method, we adopt the PML absorbing boundary and the efective boundary storage strategy in the process of wavefeld extrapolation. Finally, to strengthen the quality and precision of VSP RTM results, the depth imaging profle of a shot is calculated by the normalized cross-correlation imaging condition of sources which can efectively eliminate the source efects on RTM results, and Laplace fltering is applied to eliminate the imaging noises in fnal RTM results efectively. The imaging results of diferent models show the efectiveness of our RTM method for VSP data, and it can more accurately identify the complex underground geological structures compared with the RTM method for conventional surface seismic data.
Czasopismo
Rocznik
Strony
1269--1285
Opis fizyczny
Bibliogr. 36 poz.
Twórcy
autor
  • College of Geophysics, Chengdu University of Technology, Chengdu, China
autor
  • College of Geophysics, Chengdu University of Technology, Chengdu, China
autor
  • College of Geophysics, Chengdu University of Technology, Chengdu, China
autor
  • College of Geophysics, Chengdu University of Technology, Chengdu, China
autor
  • Korla Branch of BGP, CNPC, Korla, China
Bibliografia
  • 1. Bartolo LD, Dors C, Mansur WJ (2012) A new family of finite-difference schemes to solve the heterogeneous acoustic wave equation. Geophysics 77(5):T187–T199
  • 2. Baysal E, Kosloff DD, Sherwood JWC (1983) Reverse time migration. Geophysics 48(11):1514–1524
  • 3. Cai XH, Liu Y, Ren ZM, Wang JM, Chen ZD, Chen KY, Wang C (2015) Three-dimensional acoustic wave equation modeling based on the optimal finite-difference scheme. Appl Geophys 12(3):409–420
  • 4. Cai XH, Liu Y, Ren ZM (2018) Acoustic reverse-time migration using GPU card and POSIX thread based on the adaptive optimal finite-difference scheme and the hybrid absorbing boundary condition. Comput Geosci 115:42–55
  • 5. Chang WF, McMechan GA (1987) Elastic reverse-time migration. Geophysics 52(10):1365–1375
  • 6. Chang WF, McMechan GA (1990) 3D acoustic prestack reverse-time migration. Geophys Prospect 38(7):737–755
  • 7. Chattopadhyay S, McMechan GA (2008) Imaging conditions for prestack reverse-time migration. Geophysics 73(3):S81–S89
  • 8. Chen JB (2012) An average-derivative optimal scheme for frequency-domain scalar wave equation. Geophysics 77(6):T201–T210
  • 9. Claerbout JF (1985) Imaging the earth’s interior. Blackwell Scientific Publications Inc, Palo Alto
  • 10. Clapp RG (2009) Reverse time migration with random boundaries. 79rd Annual International Meeting, SEG, Expanded Abstracts, pp 2809–2813
  • 11. Costa JC, Medeiros WE, Schimmel M, Santana FL, Schleicher J (2018) Reverse time migration using phase crosscorrelation. Geophysics 83(4):S345–S354
  • 12. Dablain MA (1986) The application of high-order differencing to the scalar wave equation. Geophysics 51(1):54–66
  • 13. Fletcher RP, Du X, Fowler PJ (2009) Reverse time migration in tilted transversely isotropic (TTI) media. Geophysics 74(6):WCA179–WCA187
  • 14. Graves RW (1996) Simulating seismic wave propagation in 3D elastic media using staggered-grid finite differences. Bull Seismol Soc Am 86(4):1091–1106
  • 15. Kindelan M, Kamel A, Sguazzero P (1990) On the construction and efficiency of staggered numerical differentiators for the wave equation. Geophysics 55(1):107–110
  • 16. Li JS, Yang DH, Liu FQ (2013) An efficient reverse time migration method using local nearly analytic discrete operator. Geophysics 78(1):S15–S23
  • 17. Liu Y (2013) Globally optimal finite-difference schemes based on least squares. Geophysics 78(4):T113–T132
  • 18. Liu Y (2014) Optimal staggered-grid finite-difference schemes based on least-squares for wave equation modelling. Geophys J Int 197(2):1033–1047
  • 19. Liu QC (2019) Dip-angle image gather computation using the Poynting vector in elastic reverse time migration and their application for noise suppression. Geophysics 84(3):S159–S169
  • 20. Liu Y, Sen MK (2009) An implicit staggered-grid finite-difference method for seismic modelling. Geophys J Int 179(1):459–474
  • 21. Liu Y, Sen MK (2011) Scalar wave equation modeling with time–space domain dispersion-relation-based staggered-grid finite-difference schemes. Bull Seismol Soc Am 101(1):141–159
  • 22. Liu Y, Sen MK (2013) Time–space domain dispersion-relation-based finite-difference method with arbitrary even-order accuracy for the 2D acoustic wave equation. J Comput Phys 232(1):327–345
  • 23. Liu XJ, Liu YK, Khan M (2018) Fast least-squares reverse time migration of VSP free-surface multiples with dynamic phase-encoding schemes. Geophysics 83(4):S321–S332
  • 24. Neklyudov D, Borodin I (2009) Imaging of offset VSP data acquired in complex areas with modified reverse-time migration. Geophys Prospect 57(3):379–391
  • 25. Nguyen BD, McMechan GA (2015) Five ways to avoid storing source wavefield snapshots in 2D elastic prestack reverse time migration. Geophysics 80(1):S1–S18
  • 26. Ren ZM, Liu Y (2015) Acoustic and elastic modeling by optimal time–space-domain staggered-grid finite-difference schemes. Geophysics 80(1):T17–T40
  • 27. Shi Y, Wang YH (2016) Reverse time migration of 3D vertical seismic profile data. Geophysics 81(1):S31–S38
  • 28. Symes WW (2007) Reverse time migration with optimal checkpointing. Geophysics 72(5):SM213–SM221
  • 29. Whitmore D (1983) Iterative depth migration by backward time propagation. 53rd Annual International Meeting, SEG, Expanded Abstracts, pp 382–385
  • 30. Xu SG, Liu Y (2018) Effective modeling and reverse-time migration for novel pure acoustic wave in arbitrary orthorhombic anisotropic media. J Appl Geophys 150:126–143
  • 31. Yan J, Sava P (2008) Isotropic angle-domain elastic reverse-time migration. Geophysics 73(6):S229–S239
  • 32. Yan HY, Liu Y, Zhang H (2013) Prestack reverse-time migration with a time–space domain adaptive high-order staggered-grid finite-difference method. Explor Geophys 44(2):77–86
  • 33. Yang JD, Zhu HJ, Wang WL, Zhao Y, Zhang HZ (2018) Isotropic elastic reverse time migration using the phase- and amplitude-corrected vector P- and S-wavefields. Geophysics 83(6):S489–S503
  • 34. You JC, Wu RS, Liu XW (2017) First-order acoustic wave equation reverse time migration based on the dual-sensor seismic acquisition system. Pure Appl Geophys 174(3):1345–1360
  • 35. Zhang W, Shi Y (2019) Imaging conditions for elastic reverse time migration. Geophysics 84(2):S95–S111
  • 36. Zhang Y, Sun J (2009) Practical issues in reverse time migration: true amplitude gathers, noise removal and harmonic-source encoding. First Break 26:29–35
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2daa0590-8884-4a9d-9b4a-c7c015a2ba45
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.