PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Non-uniformity of the combustor exit flow temperature in front of the gas turbine

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Various types of damages to gas-turbine components, in particular to turbine blades, may occur in the course of gas turbine operation. The paper has been intended to discuss different forms of damages to the blades due to non-uniformity of the exit flow temperature. It has been shown that the overheating of blade material and thermal fatigue are the most common reasons for these damages. The paper presents results from numerical experiments with use of the computer model of the aero jet engine designed for simulations. The model has been purposefully modified to take account of the assumed non-homogeneity of the temperature field within the working agent at the turbine intake. It turned out that such non-homogeneity substantially affects dynamic and static properties of the engine considered as an object of control since it leads to a lag of the acceleration time and to increase in fuel consumption. The summarized simulation results demonstrate that the foregoing properties of a jet engine are subject to considerable deterioration in pace with gradual increase of the assumed non-homogeneity of the temperature field. The simulations made it possible to find out that variations of the temperature field nonhomogeneity within the working agent at the turbine intake lead to huge fluctuation of the turbine rpm for the idle run.
Rocznik
Strony
209--213
Opis fizyczny
Bibliogr. 16 poz., rys., wykr.
Twórcy
autor
  • Bialystok University of Technology, Faculty of Mechanical Engineering, ul. Wiejska 45C, 15-351, Białystok, Poland
autor
  • Air Force Institute of Technology, ul. Księcia Bolesława 6, 01-494 Warszawa, Poland
Bibliografia
  • 1. Błachnio J., Dięgielewski W., Kułaszka A., Zasada D. (2014), Operation-attributable factors and how they affect condition of heat-resistant coatings of gas-turbine blades, Studies and Proceedings of the Polish Association of Knowledge Management, No. 68, 17-31.
  • 2. Błachnio J., Pawlak W. (2011), Damageability of gas turbine blades - evaluation of exhaust gas temperature in front of the turbine using a non-linear observer, Advances in Gas Turbine Technology, In Tech, 435-464.
  • 3. Bogdan M., Błachnio, J. (2010), A non-destructive method to assess condition of gas turbine blades, based on the analysis of blade-surface image, Russian Journal of Nondestructive Testing, Vol. 46, No. 11, 860-866.
  • 4. Driankov D., Hellendoorn H., Reinfrank M. (1966), Introduction to fuzzy-logic control, WNT, Warsaw.
  • 5. Dzida M. (2000), Identification of reasons for non-stationary and nonhomogenous behaviour of gas temperatures and pressures downstream the combustion chamber of gas turbines, Publishing House of the University of Technology in Gdańsk.
  • 6. Marsh S. (2013), Preventig fretting fatigue in blade dovetail roots by modifying geometry of contact surfaces, Power Transmission Engineering, 28, 45-49.
  • 7. Pawlak W., Wiklik K., Morawski J. M. (1966), Synthesis and investigation of control systems for turbojet engines with use of computer simulation methods, Scientific Library of ITWL, Warsaw.
  • 8. Pawlak W. I. (2000), Influence of an inequality of gas thermal field at the engine turbine inlet on the speed of transient processes – the result of experiments with simulation model, Journal of KONES Internal Combustion Engines, Vol. 7, No. 1-2, 37-42.
  • 9. Pawlak W. I . (2010), Turbojet engine – instruments for simulation, control and monitoring, Scientific Library of the Institute of Aviation, Warsaw.
  • 10. Pawlak W. I., Balicki W. (2003), Influence of an inequality of gas thermal field at the engine turbine inlet on the speed of transient processes – the result of experiments with real engine, Journal of KONES, Vol. 10, No. 3-4, 25-28.
  • 11. Pismenny J., Levy Y. (2002), Local Temperature Regulator In Gas Turbine Engines, International Journal of Turbo& Jet – Engines, Vol. 10, No. 1-2, 79-92.
  • 12. Spychała J., Pawlak W., Kułaszka A., Błachnio J. (2013), Assessment of technical condition demonstrated by gas turbine blades by processing of images for their surfaces, Journal of KONBIN, 1 (21), 41-50.
  • 13. Stewart I. (2001), Does God play dice. The new mathematics of chaos, PWN Scientific Publications, Warsaw.
  • 14. Swadźba L., Maciejny A., Formanek B., Mendala B. (2008), Characterization of microstructure and properties of TBC systems with gradient of chemical composition and porosity, Archives of Metallurgy and Materials, 53, 945-954.
  • 15. Wróbel Z., Koprowski R. (2004), Practice in image processing within the MATLAB software, EXIT Academic Publishing House, Warsaw.
  • 16. Żółtowski B., Cempel C. (2004), Machinery fault diagnosis engineering, Polish Society of Engineering Diagnosis, Warsaw.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2da8f5ff-21fb-4c0e-b904-9bf2bb8787b0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.